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6.1 Introduction
The topic of this chapter is zero-variance Monte Carlo schemes and their use for improving the conver-
gence rates of Monte Carlo subsurface scattering (SSS) calculations for image synthesis. We expand
upon a previous work by the authors [Křivánek and d’Eon 2014] and include several new result such as

• Two new perfectly-zero-variance half-space escape schemes,
• Zero-variance theory for generalized radiative transfer (GRT) (non-exponential random media),
• An exit-resampling procedure for asymptotic/Dwivedi guiding that better accounts for the impor-

tance change near boundaries.

6.1.1 Brute Force Subsurface Scattering

Brute force Monte Carlo subsurface scattering is now commonplace in production rendering soft-
ware [Chiang et al. 2016; Kulla et al. 2018; Fascione et al. 2018; Christensen et al. 2018; Georgiev
et al. 2018]. This approach works by sampling random walks/flights inside a participating medium to
connect illuminated surface points to nearby exit points (Figure 1). These random walks are unbiased
Monte Carlo estimators of fully general bidirectional scattering-surface reflectance-distribution func-
tions (BSSRDFs) [Nicodemus et al. 1977] and so are highly flexible and accurate. However, they can
be considerably slower than methods that use approximate BSSRDFs. In this chapter we show how
analytic importance functions can be used to guide the sampling of these random walks such that the
efficiency of the method is improved without losing accuracy.

The BSSRDF is what gives rise to the characteristic bleeding of light that makes translucent materials
like human skin appear soft. High quality predictive image synthesis requires that the BSSRDFs are
accurately specified and sampled. However, in contrast to BRDFs that are typically known analytically,
in any practical setting the BSSRDF is a high-dimensional and unknown function. This is because it
follows from the solution to an integral equation for the collision density inside the material and that
solution depends on the shape of the boundary. The boundary, and therefore the BSSRDF, might even
change over time—the BSSRDF of your nose changes as you wiggle your toes (although not measur-
ably). Even in idealized scenarios where exact solutions are known [Williams 2007; Machida et al.
2010; Liemert and Kienle 2013], they are only known in a semi-analytic form and exhibit no obvious
importance sampling scheme for generating outgoing surface positions and directions in a single step.
Approximate BSSRDFs can be sampled very efficiently, however, but at the cost of accuracy.

Most efficient SSS algorithms proposed in graphics [Jensen et al. 2001; Borshukov and Lewis 2003;
Donner and Jensen 2005; d’Eon et al. 2007; Donner et al. 2008; D’Eon and Irving 2011; Christensen
2015] approximate the BSSRDF with a 2D lateral convolution of the incident light based on solutions
of the transport equation in plane geometry and then impose diffusive angular shapes on the outgoing
radiance. Later methods have improved upon the angular domain of this approach [Habel et al. 2013;
d’Eon 2014; Frisvad et al. 2014; Frederickx and Dutré 2017], but lack the general accuracy and flexibil-
ity of the random walk approach in curved geometry. With increasing compute power the trend is more
and more in favour of exact BSSRDFs that satisfy the equation of radiative transfer.

1This chapter contains novel material by both authors that was regrettably not published before Jaroslav’s passing. As such, it
is essential that any reference to this work includes attribution to Jaroslav.



Figure 1: Random-walk SSS can result in long complex paths (illustrated here as dashed lines) in-
side the material that transport light beneath the surface from a point of illumination to some nearby
location. The standard methods for sampling these paths can result in high variance weights due to
longer paths being absorbed more. This chapter discusses guided sampling techniques that reduce this
variance, yielding faster convergence, shorter paths on average, and, therefore, shorter render times.

Despite not knowing the exact BSSRDF itself, we always have a simple Monte Carlo procedure for
importance sampling it: the random walk is generated from alternate sampling of the free-path-length
distribution (moving the position of the walk) and phase function (changing the walk’s direction) until
escape is sampled (with BSDF sampling at the boundary). This procedure follows directly from the
integral equation that the collision rate density inside the material satisfies [Lafortune and Willems 1996;
Raab et al. 2008]. This flexible approach works regardless of the shape of the object, how scattering
and absorption processes inside vary, or what BSDF is on the boundary.

In the absence of absorption inside the volume, the classical random walk method is already zero vari-
ance—every path is sampled in exact proportion to the BSSRDF with unit weight (assuming nothing
inside or on the boundary absorbs light). For such impossibly-white materials, the content in this chapter
has nothing to offer. When absorption is present, however, the weights of this sampling procedure vary
with αn where α is the single-scattering albedo at each collision event and n is the number of medium
collisions along the path (the number of times the phase function is sampled). The main objective of
applying zero-variance schemes to random walk SSS is to remove all variance in the path weight that is
due to internal absorption. Because of the plane-parallel nature of the guiding, these methods also apply
directly to stochastic methods for sampling layered materials using “position-free” walks [Hanrahan
and Krueger 1993; Guo et al. 2018].

6.1.2 Terminology

Much of the zero-variance theory that we apply originates from the neutron transport literature [Kahn
1956; Coveyou et al. 1967; Hoogenboom 2008a]. In this literature, statistically unbiased estimators that
converge to the correct answer are referred to as “fair games”, and an estimator “scores” a value (its
final particle weight, usually). The term “analog” sampling refers to always locally sampling free-path
distributions and phase functions directly from their given distributions in isolation, oblivious to where
light sources or camera sensors lie in the scene. As such, the simulated particle does the physical analog
of a real particle in a physical system [Spanier and Gelbard 1969]. In analog sampling, the particle
weight is always 1 (continue to scatter) or 0 (death by absorption, terminating the walk).

In the context of rendering, analog sampling is only implicitly used for materials like glass and mirrors
that do not lose any energy. The analog sampling of other BSDFs like a Lambertian reflector would
sample outgoing directions and terminate the particle with a probability equal to one minus the diffuse



albedo (equivalent to Russian Roulette that always ensure unit particle weight). Instead, we almost
always directly jump to using “Implicit capture”—a form of variance reduction that uses a statistical
particle weight to account for absorption. In a participating medium, for example, this works by adjust-
ing the particle weight by a factor of the single-scattering albedo α at every collision. When we refer to
“classical sampling”, we mean analog sampling plus implicit capture, which is technique described in
graphics text books [Pharr et al. 2016].

In the neutron transport literature, “biased” can refer to importance sampling anything other than the
analog distributions. When this literature refers to, for example, “biased direction sampling” in the
context of zero-variance theory, they are simply referring to drawing directions from a distribution other
than the phase function and adopting the appropriate weight adjustment to ensure a “fair game”. We
will instead use “guiding”, to avoid any confusion with “statistical bias”.

We will limit our attention to BSSRDF sampling alone and not to the challenging task of sampling the
product of incident illumination with the BSSRDF. This is equivalent to assuming a uniform isotropic
source everywhere on the boundary surface and we use the term “guiding-to-escape” for this class of
problem. However, the same general theory applies (with higher-dimensional importance functions) to
guide SSS random walks when the incident illumination at the boundary is known both in the angular
and spatial domains. In this case, it is common to use a two-stage procedure where an approximate
importance function is predetermined in the volume in some discrete form either using deterministic or
Monte Carlo methods before random walks begin [Turner and Larsen 1997].

We will follow neutron transport and use “collision” to refer to interactions with the medium, which
includes both absorbing and scattering collisions.

6.1.3 Outline

Our main goal in this course is to complement the theoretical literature on zero variance schemes by
working through several examples that clearly illustrate how the theory is applied in practice. A sec-
ondary motivation is to show how the theory can be applied in random media (GRT). After reviewing
related work in the next section we define and motivate GRT in Section 6.3. Several key differences
between classical and non-exponential (non-Beerian) transport are discussed before defining the gen-
eral framework of escaping a half space with isotropic scattering in GRT (Section 6.4). In Section 6.5
we derive two new exactly-zero-variance random walks, one for classical scattering in a rod and one
for a closely related problem of Gamma-2 random flights in 3D. These examples not only demonstrate
that exactly zero variance walks are possible, but also illustrate how such walks differ from classical
unguided walks, and how the notion of adjoint importance (exact or approximate) is used to product
sample free-path-length and angle sampling decisions to guide a random walk towards a zero-variance
version. We review asymptotic (Dwivedi) guiding in Section 6.6 and discuss anisotropic scattering. We
finish with some general tips (Section 6.7).

6.2 Related Work
We recommend Hoogenboom [2008a] for a thorough review of the history of zero variance theory in-
cluding a complete treatment of last-event, collision and track-length estimators. We also recommend
Turner and Larsen [1997] for additional details, but prefer the integral equation approach of Hoogen-
boom, not only because the integro-differential form gets messy, but mostly because of its natural fit for
GRT. The related contributon theory is also worth noting [Williams 1991].

For a survey of methods that use deterministic importance functions for particle guiding, see [Haghighat
and Wagner 2003].

Deep-Penetration Monte Carlo The primary motivation for analytical zero-variance estimators
is for shielding calculations in particle transport where the variance reduction for guided vs unguided



walks is many orders of magnitude and the guiding is, on average, towards deeper locations in the
material, as opposed to subsurface scattering, where we guide to escape the volume anywhere, although
typically back towards the entry location. For a recent survey on variance reduction methods for deep-
penetration neutron transport, see [Munk and Slaybaugh 2019].

Condensed History There are several other ways to improve the efficiency of the random walk
approach to SSS. Similarity theory and condensed-history schemes can be used to progressively alter the
analog sampling distributions as the walk is generated in order to simulate more than one propagation
step at a time (for example, making the phase function more isotropic after some number of events,
and adjusting the future mean free path to compensate). In doing this, the history of the particle is
condensed into fewer individual steps. These methods often introduce small errors, but some aspects
of these schemes can exactly maintain desired properties of the uncondensed transport. Condensed
history schemes are highly effective in infinite media, but handling boundary crossing/escape without
significant error is a major challenge.

A variety of condensed history schemes called shell-tracing (in computer graphics [Müller et al. 2016])
begins by finding the largest sphere around a previous collision such that the medium can be consid-
ered homogeneous inside that sphere. The particle is then teleported to that sphere’s surface with an
appropriate weight adjustment [Fleck and Canfield 1984; Moon et al. 2007]. For some problems this
can yield massive gains.

Both condensed history and similarity theory have the most to offer in weakly absorbing materials
where thousands of collisions per walk are common, whereas zero-variance guiding-to-escape schemes
provide more relative benefit when the material absorbs, making the two approaches complementary.
They can be combined using the same steps outlined in this chapter by normalizing the appropriate
product involving the importance function. For use of similarity theory in graphics see [Frisvad et al.
2007; Zhao et al. 2014]. For more on condensed history see [Bhan and Spanier 2007; d’Eon 2016].

Guiding and Importance in Graphics The zero-variance Monte Carlo theory is tightly coupled
to the theory of adjoint estimators and importance. See Christensen [2003] for an excellent summary of
the use of adjoint importance in graphics. We also note several works [Xu et al. 2001; Xu et al. 2006]
that applied the zero variance theory explicitly for global illumination in scenes with no participating
media.

Machine Learning Several recent works have used machine learning to directly importance sample
BSSRDFs on curved domains [Vicini et al. 2019] and to accelerate subsurface transport using learned
infinite medium Green’s functions [Deng et al. 2020]. Almost certainly we will see more applications
involving machine learning to path guiding in volumes. We hope that some of the deterministic princi-
ples that we touch upon in this chapter will inform the design of these methods.

6.3 Generalized Radiative Transfer (GRT)
The transport of waves or particles in a random medium consisting of optically active particles/mi-
crostructure is sensitive to exactly how these particles are distributed. When particles in a region with
a fixed number density are reconfigured to obey positive (clumpy) or negative (repelling) spatial corre-
lation, this will give rise to different attenuation laws and bulk transport (Figure 2). This phenomena
has been long recognized under a variety of names, such as the sieve/package effect [Rabinowitch 1951;
Kirk 1975], the channeling effect [Burrus 1958; Burrus 1960], distributional error [Fukshansky 1987],
or large scale inhomogeneities, clumping, mixing-fraction variations, particle-self-shielding [Randall
1962]. Particle reconfiguration can completely transform the properties of the material from transparent
to opaque [Torquato 2016]. It is desirable to formulate transport theory machinery that can efficiently
account for these effects in order to simulate the broadest class of materials.



(a) independent scattering centers (b) blue noise

Figure 2: The same density of particles reconfigured from an independent distribution (left) to a config-
uration with negative (repelling) correlation yields shorter mean free paths. Here we show 2000 paths
in each image with origins drawn uniformly from the dashed circle extended to their first collision.

The gold standard approach for including distributional effects in random media is with a stochastic
transport equation that permits the material coefficients to become random variables. This approach was
first applied in wave transport [Frisch 1968; Ishimaru 1978], and later to the scalar equation of radiative
transfer [Anisimov and Fukshansky 1992]. Solving for the mean transport over all permissible random
realizations of the system with an averaging step is a rigorous approach but it is challenging to derive
exact solutions from this method without making additional assumptions about the magnitude of the
correlations. The corresponding rigorous Monte Carlo approach is called quenched disorder [Larmier
et al. 2017] and works by sampling a number of explicit random realizations for the medium and then
performing classical (deterministic or Monte Carlo) transport calculations within each. The desired
transport quantities are averaged over the simulated realizations. This approach is also prohibitively
expensive and neither of these rigorous approaches is likely to be directly applied in computer graph-
ics. However, both are important benchmarking tools that can be used to evaluate faster approximate
methods.

One highly efficient approach to approximating the stochastic transfer equation is to adopt a short term
memory and only remember enough of the past to exactly exhibit the free-path-length statistics between
collisions [Randall 1964; Hoffman 1964; Audic and Frisch 1993; Moon et al. 2007; Larsen and Vasques
2011]. This is the foundation of what we will refer to as generalized radiative transfer (GRT) [d’Eon
2019a; Davis and Xu 2014]. This allows a new aspect of random media that classical transport theory
lacks, which is that the distribution of free-path-lengths between collisions pc(s) can be non-exponential
(and the attenuation law non-Beerian). This distribution can be measured from Monte Carlo simulation
in quenched disorder [Audic and Frisch 1993; Moon et al. 2007; Larsen and Vasques 2011] or from
analytical analysis of a given stochastic model for the random extinction coefficient µt [Davis and
Mineev-Weinstein 2011]. The stochastic process of a particle moving through the system is then a
continuous time random walk [Weiss 1983] or, from a time-independent viewpoint, simply a general
random flight based on pc(s) [Dutka 1985].

To apply zero variance theory to GRT we need a transport equation. Two equivalent such equations are
known. The integro-differential-like equation of GRT includes a time-like integration over a memory
variable s—the distance since the previous medium or boundary interaction [Larsen and Vasques 2011].



This increases the phase space of transport with an extra dimension. This memory is required to exhibit
the semi-Markov nature of the particle flight. From a discrete-time point of view (over collision order),
the collision chain is fully Markovian, and the collision-rate density satisfies a generalized Peierl’s
integral equation [Grosjean 1951; d’Eon 2019a]. This is the simpler equation of transfer, closest to
the classical form, where all memory is encoded in pc(s), and from this the zero variance theory is
immediately applicable. These integral equations have been used to generalize the volume rendering
equation in computer graphics [d’Eon 2013; Jarabo et al. 2018; Bitterli et al. 2018].

To summarize, GRT is a non-exponential random flight where intercollision free path lengths are drawn
from pc(s), and absorption and scattering are non-stochastic (do not depend on s). The attenuation law
when leaving a collision is then [Larsen and Vasques 2011]

Xc(s) =

∫ ∞
s

pc(s
′)ds′. (1)

We require a second set of statistics to apply GRT to bounded domains in a form that satisfies Helmholtz
reciprocity. This follows from the need to distinguish between stochastic and deterministic origins in
GRT [Audic and Frisch 1993]. Consider the mean chord length between particles in the medium over
various realizations. We can only begin such paths from an origin where the last collision ended. Thus,
we average over only those realizations with a particle at the origin. This origin is then correlated to the
other particles in the volume and we use the label “c”. In contrast, a deterministic location on a material
boundary lies in all realizations of the system. The statistics for free-path length from the boundary must
average over the full ensemble (these path-lengths are not chords [Lu and Torquato 1992]). This leads
to a related distribution pu(s) for the free-path-lengths to next collision from an uncorrelated origin.
The distribution pu(s) is used for any path leaving a boundary surface or emission from the volume in
an uncorrelated manner. Otherwise pc(s) is used and the two distributions only align for the unique
case of exponential random media pc(s) = pu(s) = e−s/`/`, where ` is the mean free path. There is a
related attenuation law from uncorrelated origins given by

Xu(s) =

∫ ∞
s

pu(s′)ds′. (2)

For an example illustrating why the two distributions differ, see Figure 3.

If any one of pc(s), pu(s), Xc(s), Xu(s) are known, the other three are uniquely determined by simple
relations [d’Eon 2018]. The distribution pu(s) is also known as the equilibrium distribution of free path
lengths, and Xc(s) and pu(s) are proportional [Feller 1971; Tunaley 1974; Tunaley 1976; Weiss 1983].

6.3.1 Radiance and Collision Density

An important distinction between two fundamental transport quantities arises in GRT due to the break-
ing of their classical local proportionality: radiance and collision rate density [d’Eon 2013]. Radiance
L(x, ω) describes the density of particles in flight at position x in direction ω. This tells us what we
would measure if we inserted a tiny camera sensor in the volume and let particles hit that detector. This
measurement is of the particles in flight, not the scatterers in the medium. The collision rate density
C(x, ω) is defined such that C(x, ω)dωdx is the rate at which particles are entering collisions within
positions dx about x and confined to directions in dω about ω. Measuring this quantity is to observe the
medium itself: the scatterers. Only in classical exponential media do we find the local proportionality

C(x, ω) = µt(x, ω)L(x, ω). (3)

In GRT, the extinction coefficient µt(s) = pc(s)/Xc(s) is not a locally defined quantity, and so no local
conversion is possible. Volumes in GRT are therefore specified with pc(s), albedo α and phase function
P , as opposed to absorption and scattering coefficients.
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Figure 3: When scatterers in a random medium are spatially correlated, the free-path length statistics
between collisions are necessarily distinct from those for paths beginning at a boundary interface.
Here we illustrate the case of negatively-correlated convex scatterers separated by a minimum distance
ŝ = 0.065. For paths beginning at the left boundary of a unit thickness slab (solid-black) collisions
can occur arbitrarily close to the boundary and the related path length PDF pu(s) and attenuation law
Xu(s) reflect this. Continuing in the same direction from the first collision to the second collision (red-
dashed), we find path lengths with a minimum length ŝ. The intercollision free-path distribution pc(s)
is therefore identically zero for s < ŝ due to the scatterers separation, and the attenuation law between
collisions Xc(s) is 1 for this initial distance. Note that Xc(s) and pu(s) are always proportional.



Because of the new relationship between radiance and collision density in GRT (and their scalar coun-
terparts, fluence and scalar collision density C(x)), generalization of classical methods require extra
care. Each of these quantities has distinct collision and track-length estimators and diffusion approxi-
mations in GRT, where in the classical case there was effectively only one form of these tools [d’Eon
2019a]. This is important to keep in mind with respect to graphics literature where the integral equation
inside of volumes is always written over radiance

L(x, ω) =

∫ ∞
0

Xc(s)

∫
4π

µsP (ω′ → ω)L(x− sω, ω′)dω′ds (4)

probably for the reason that radiance is the quantity at the camera aperture that forms the final image.
However, it is only the collisions in the volume that the camera sees, not all the particles in flight, and so
the integral equation for collision density is more directly tied to what we integrate in volumetric path
tracing

L(x, ω) =

∫ ∞
0

Xc(s)

∫
4π

αP (ω′ → ω)C(x− sω, ω′)dω′ds (5)

For GRT this becomes a critical distinction: the importance functions needed to guide a random walk
towards zero-variance satisfy the integral equation for collision density

C(x, ω) =

∫ ∞
0

pc(s)

∫
4π

αP (ω′ → ω)C(x− sω, ω′)dω′ds. (6)

The adjoint incoming radiance field in the scene [Novák et al. 2018] is of little use for path guiding.

6.4 Guiding-to-Escape in a Half Space
We turn now to a half space escape problem that will form the basis for much of the following sections.
We assume a homogeneous semi-infinite 3D medium defined by x > 0 with a flat indexed-matched
boundary and isotropic scattering and absorption in the interior (see Figure 4).

6.4.1 Sources and Detectors

A linear transport problem is defined by specifying a medium/scene, its properties and boundaries, and
a set of light sources. We then define a detector sensitivity or measurement functional over the phase
space (typically just a camera in rendering). In the general case, we seek a zero variance estimator that
has particles leaving the sources and arriving at the detectors such that every simulated particle reaches
a detector and reaches it such that the particle weight times the detector sensitivity at that position and
direction is a constant. In this general case, the first step of the zero variance derivation is to determine
the guided spatial and angular distributions from which to leave the sources [Hoogenboom 2008a]. In
the case of BSSRDF sampling, however, our source is always a single element of phase space: an
incident position and direction, which we always sample with weight w = 1. Since we assume a flat
homogeneous geometry, it suffices to only know the incident cosine, and so we will derive 1D families
of estimators over µi. Our detector sensitivity is defined as 1 for all positions and directions that escape
the medium.

6.4.2 The Classical Estimator

We are given as a starting point that a particle arrives at the boundary entering the medium along a
direction with a cosine to the inward normal of µi. The classical estimator proceeds with (see Figure 4)

1. Particle weight w = 1

2. Sample initial displacement s1 from pu(s) and move particle

3. Absorb w → w ∗ α



4. Sample direction ω from phase function P

5. Sample intercollision displacement s from pc(s) and move particle

6. if x < 0 return/score w at the exitant boundary position and direction and terminate the walk

7. goto 3.

6.4.3 The Guided Estimator

The key shortcoming of the classical estimator is that the sampling of pu(s), P and pc(s) are locally
greedy—they are perfect estimators of these normalized distributions, but are ignorant of the end goal,
like playing chess while only thinking one move ahead. We will derive the zero variance estimator for
escaping the half space by guiding each of these three sampling decisions. The distributions that are
required to achieve zero variance depend on the position and direction of the particle right before these
sampling steps are performed and are uniquely determined from a value or importance function W that
satisfies an adjoint integral transport equation for collision rate density inside the volume [Hoogenboom
2008a]. In the final step we will also adjust the escape scoring to use an expected value estimator.

Initial Free Flight: Our first step is to sample the initial free-flight distance s1 from a guided distribu-
tion p1(s) that achieves the zero-variance goal. In sampling s1 from p1(s) instead of pu(s), the particle
must adopt a weight factor of w1(s1) = pu(s1)/p1(s1). After traversing free-flight distance s1 the
particle enters a collision at depth x1 = µis1 with weight w1(s1). Let W (x, µ) be the probability that
a particle entering a collision at depth x along direction with cosine µ eventually escapes the medium.
The expected contribution of our particle after initial displacement is therefore its current state times
the expected total future state, w1(s1)W (x1, µi). For the random walk to be zero variance this result
must be a constant, and that constant must be equal to the diffuse albedo of the medium for incoming
direction µi

w1(s1)W (x1, µi) =
pu(s1)

p1(s1)
W (µis1, µi) = R(µi). (7)

From this we see that p1(x) must be

p1(s) =
pu(s)W (sµi, µi)

R(µi)
. (8)

We see that the guided distribution is the product of the analog distribution and the importance function
with a normalization factor. We don’t need to know R(µi), because we can find it by simply requiring
that p1(s) integrates to 1. For no absorption, we see R = 1,W (x) = 1 and analog sampling p1(s) =
pu(s), as desired.

The Full Guided Estimator: The previous example illustrates the key components of the general
procedure for deriving each step of a random walk in order to achieve zero variance:

• The end state of a guided step will be the resulting particle weight and the particle position and
direction
• The resulting particle weight will be the prior weight times the ratio of the analog and guided

distributions at the sampled distance/direction
• There is a unique probability to escape the medium at the sampled particle position and direction

(importance W ). Care must be taken here to distinguish between entering and leaving collisions.
• The guided distribution must be the normalization of W times the analog distribution.

We will see the details of the remaining steps in the general procedure during the following examples.

To summarize the notation (also summarized in Table 1) of the upcoming guided distributions: absorp-
tion is handled identically to the classical random walk, applying implicit capture per collision with
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Figure 4: For guided BSSRDF sampling we consider the illustrated GRT random walk in a 3D half
space. A particle arriving along a direction with cosine µ0 enters the medium and collides after a
distance drawn from pu(s). Absorption with probability 1 − α occurs at each collision event. If not
absorbed, the particle continues after phase function sampling until exit is sampled. Each zero-variance
derivation assumes some importance function for escape W (x) when entering collision at depth x and
from this follows guided distributions p1(s) for the initial free-path lengths and related distributions for
direction and intercollision length sampling. These distributions and their related weight adjustments
are summarized in Table 1.

weight factor α. Phase function sampling requires polar µ and azimuthal φ angle decisions drawn from
guided distributions P g(µ;x) and a uniform azimuth distribution 1/2π, respectively. The guided az-
imuthal sampling is identical to the analog case because of the plane symmetry of the medium and
detector sensitivity, so the weight factor for azimuthal guiding is wφ = (1/2π)/(1/2π) = 1. For polar
angle sampling, wµ = (1/2)/P g(µ;x) accounts for guiding away from the uniform (1/2) distribution
of isotropic scattering. Weight factor ws = pc(s)/p

g
c(s;x, µ) accounts for the guided intercollision

free-path length sampling from pgc(s;x, µ).

6.5 Two Exactly-Zero-Variance Walks
Achieving a perfectly zero-variance walk for a given problem is almost always more challenging than
estimating the desired quantity, because the importance function is required everywhere in the scene.
However, it can still be useful to apply the theory using an approximate importance W (x), to reduce
the absorption variance. This can improve upon classical sampling even if the geometry is curved,
if the medium coefficients vary with position or if there is other geometry imbedded in the medium.
Since there are several examples with isotropic scattering in half spaces where the exactly zero variance
estimator is possible, we will review those in order to best demonstrate how zero variance walks are
derived and how they differ from the classical estimators.

The first example we consider is for the reflection from a classical half rod with isotropic scattering: a
simplified one-dimensional domain where particles can only move in one of two discrete directions, left
(−) and right (+). Because the collision rate density in the half rod is a simple exponential, the guiding
importance sampling decisions can be handled analytically and we avoid the complexity of the singular
eigenfunctions of the related problem in a 3D half space.



Sampling Decision Analog Guided Weight Factor
Initial free-path length s1 from the boundary pu(s) p1(s) w1 = pu(s1)

p1(s1)

Intercollision free-path length s pc(s) pgc(s;x, µ) ws = pc(s)
pgc(s;x,µ)

Direction cosine µ (1/2) P g(µ;x) wµ = (1/2)
P g(µ;x)

Direction azimuth φ (1/2π) (1/2π) wφ = (1/2π)
(1/2π) = 1

Table 1: Summary of our notation for the analog and guided distributions for planar guiding to escape
in a homogeneous GRT volume.

Figure 5: The Albedo problem for the half rod.

The second example we consider is a new derivation for GRT in a 3D half space where free-path lengths
between collision are drawn from a Gamma/Erlang-2 distribution. This zero variance estimator shows
how the zero-variance theory extends to easy handle GRT. We will also see that a projection of this
random walk onto the depth axis is equivalent to our first example in the rod.

6.5.1 The Zero-Variance Walk in the Half Rod: Křivánek’s Walk

We now consider the problem of external illumination reflecting from a one-dimensional absorbing and
scattering half space with isotropic scattering and vacuum boundary conditions (Figure 5). We consider
specifically the rod model2—a simplified one-dimensional domain in which particles can only flow right
or left ([Wing 1962; Hoogenboom 2008b]). This problem corresponds to the classical albedo problem
of linear transport theory [Chandrasekhar 1960], but in a 1D universe—the unique dimensionality for
which the full solution both at the boundary and internally is known exactly in terms of simple explicit
expressions [d’Eon and McCormick 2019].

While 1D rod transport has limited direct physical application [Zoia et al. 2011], study of this problem
provides all of the essential ingredients for building a zero-variance half space walk, without the distrac-
tion of complex importance functions. The rod has been used several times to demonstrate zero-variance
walks [Hoogenboom 1981; Hoogenboom 2008b]. However, to our knowledge, the zero variance walk
we derive in this section is new3.

Let us define the half rod to occupy the positive axis x > 0 with direction ω = 1 corresponding
to flight deeper into the rod and ω = −1 towards the boundary. The phase space for monoenergetic
particles/photons is then R×{−1, 1}. Scattering is isotropic, where each collision draws a new direction
ω from {−1, 1} with equal probability, and the single-scattering albedo is α. This example assumes
classical media with exponential free-path length distributions and attenuation laws pc(s) = pu(s) =
Xc(s) = e−s.

Our random walk begins entering the rod at the boundary x = 0, ω = 1 and proceeds with an initial
free-flight transition followed by a chain of collision and free-flight steps until the particle is either
absorbed or escapes. The analog walk chooses between collision and absorption with a discrete binary
decision and clearly leads to unresolvable variance, so the first step in guided sampling is to use implicit

2Also known as the two-directional or Fermi model
3This result was communicated to the first author by the second author on Nov 24, 2013 and has been named to reflect its

origin.



capture, as is standard in volumetric light transport. This is accounted for by a particle weight w that
beings the walk at 1 and is multiplied by the single-scattering albedo for every collision inside the rod.

Next, following Hoogenboom [2008a], we extend the rod to the full line, letting the exterior portion x <
0 be purely absorbing. This is a mathematical convenience that informs derivation of the importance
function for the entire system that is used to guide the random walk. In this extended interpretation
of the problem, any collision in x < 0 scores the current particle weight and terminates the walk.
Any absorption inside the rod scores 0 and continues. This imparts a last event collision estimator
interpretation on escaping the medium.

We now define an importance (or value) functionW (x, ω) for the rod defined as follows: W (x, ω) is the
probability that a particle entering a collision at position x moving in direction ω (before the collision)
eventually escapes the rod. From the assumption of isotropic scattering we see immediately that the
desired importance function is independent of direction ω. This is a hallmark of deriving zero variance
walks for problems with isotropic scattering: the dimensionality of the importance function is greatly
reduced.

We can find W (x) from known solutions for the collision rate density inside a half rod due to external
illumination. The two are directly related, by reciprocity. The specific solution follows from solving
a Wiener-Hopf integral equation with the Picard/Lalesco kernel[Wing 1962; d’Eon and McCormick
2019] (more on this later). The result is

W (x) =

{(
1−
√

1− α
)
e−
√
1−αx, x ≥ 0

1 x < 0
(9)

where we have set the value to 1 for any position outside of the volume.

We note several important features of this result. For the conservative medium α = 1, W (x) = 1
everywhere because entering a collision anywhere eventually leads to escape, which shows that the
classical random walk estimation of the albedo R is already zero variance. Given W , we immediately
have the final weight of our zero-variance walk, the escape probability, given by

R =

∫ ∞
0

pu(s)W (s)ds =

∫ ∞
0

e−sW (s)ds =
2

α

(
1−
√

1− α
)
− 1. (10)

Initial Free Flight: Following the arguments from the previous section we see that p1(x) must be

p1(x) =
pu(x)W (x)

R
. (11)

We find that p1(x) simplifies to a simple exponential

p1(x) =
(√

1− α+ 1
)
e−(
√
1−α+1)x, (12)

which we can easily importance sample by CDF inversion, giving

x1 = − log(1− ξ)
1 +
√

1− α
(13)

where ξ ∈ [0, 1) is a uniform random variate.

Direction Sampling: For each collision at depth x > 0 we need to sample an outgoing scattering direc-
tion ω such that the future contributions from subsequent collision and escape are perfectly balanced.



Let the guided distribution p+(x) be the probability that the positive direction is sampled after colli-
sion at depth x, and p−(x) = 1 − p+(x) the probability of scattering towards the boundary. This is a
discrete variant of P g(µ;x) described in the previous section. For every collision, the particle enters
with weight w = R/W (x). Immediately following the collision the weight is adjusted by implicit
capture to w′ = αR/W (x). If the particle scatters positive, we have a further weight adjustment of
wω = (1/2)/p+(x) due to guiding away from the analog choice of equal probabilities for both di-
rections. The expected score of the particle having gone right is then the total weight after scattering,
w′wω , multiplied by the expected final score over all possible free-flight distances s,

w′wω

∫ ∞
0

pc(s)W (x+ s)ds = R (14)

Solving this equation for p+(x) we find simply

p+(x) =
1

2
(1−

√
1− α). (15)

Remarkably, this result is invariant to depth—no matter where we collide in the rod, we need to sample
away from the boundary with the same probability that depends only on the absorption level in the rod.
As absorption increases and α decreases, we sample towards the boundary with increasing probability—
paths are guided towards the exit. When there is no absorption (α = 1) we recover the analog phase
function sampling p+(x) = (1/2), as desired.

Direction ω is easily sampled from {p + (x), p−(x)} using a single random number for the discrete
choice. The weight factor due to this importance sampling simplifies to

wω =

{
1

1+
√
1−α , ω = −1
1

1−
√
1−α , ω = 1

. (16)

General Free-Path Sampling: The final step in building the zero-variance walk for the rod is to de-
termine the guided intercollision free-path length distribution pgc(s;x, ω) and to handle the case where
the particle exits the volume. Here, pgc(s;x, ω)ds is the probability that we sample a guided distance-
to-collision s falling in [s, s+ ds] when leaving a collision at x in direction ω.

In the case of moving in the positive direction, ω = 1, we need to sample a intercollision distance s+

from a distribution proportional to pc(s)W (x+ s). This results in the same exponential distribution we
saw above for the initial collision depth x1 and so we have

pgc(s;x, 1) = p1(s) (17)

with sampling procedure given in Eq.(13). For free-flight distances s in the negative direction we again
need to sample from the normalized distribution that is proportional to the product of pc(s) and the
importance function pc(s)W (x− s). We find the normalization constant to be∫ ∞

0

pc(s)W (x− s)ds = e
√
1−α(−x), (18)

resulting in
pgc(s;x,−1) =

(
1−
√

1− α
) (
e−s(1−

√
1−α)

)
, 0 < s < x. (19)

Like the positive direction case, we again find a distribution that is translationally invariant. The shape of
the PDF beyond the boundary s > x is not important—we only need to observe that this distribution up
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Figure 6: Guided transition kernels T (s) (combining phase function and free-flight sampling) for the
zero-variance walk in the half rod. With decreasing single-scattering albedo α negative displacements
towards the boundary (escape) are increasingly preferred.

to the boundary is an exponential with a mean free path of 1/(1−
√

1− α) and sample that distribution.
Any time a distance past the boundary is sampled, we apply a mean-value weight factor wesc, which is
the ratio of the analog probability for escape to the probably of escaping with the guided distribution

wesc =
Xc(x)

e−x(1−
√
1−α)

. (20)

Finally, if we sample an interior collision s < x, we apply the weight factor for the guided free-path
length

w → w ∗ pc(s)

pgc(s;x,−1)
. (21)

This completes the derivation of the zero-variance walk. We include a Mathematica implementation of
it in the supplemental material.

It is informative to look at combined transition kernel T (s) that combines direction and displacement
sampling together using a signed free-flight distance s where the sign indicates whether or not the depth
of the next collision is closer to the boundary and farther into the rod. We find

T (s) =

{
α
2 e
s(1−

√
1−α), s < 0

α
2 e
−s(1+

√
1−α), s > 0

. (22)

These guided displacement kernels are plotted in Figure 6 for various absorption levels and show how
increased absorption leads to increased preference for negative (towards the boundary) displacements in
order to get the particle out before it is overly absorbed. Figure 7 shows the relative change in particle
weight after a net positive or negative displacement in the rod with the zero-variance scheme. It is
interesting that this shows no discontinuity at 0 displacement.

6.5.2 The Zero-Variance Walk in the Gamma-2 Half Space

In this section we derive the first perfectly-zero-variance walk for escaping an absorbing half space in
3D. To our knowledge, this is also the first zero-variance walk of any form derived for GRT.
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Figure 7: Relative change in particle weight w′ in transitioning a relative distance s in the rod.

Specifically, we consider the 3D half space x > 0 with Gamma-2-distributed free-path lengths between
collisions. Upon specifying pc(s), the following full set of GRT statistics follow [d’Eon 2018]

pc(s) = e−ss, (23)

Xc(s) = e−s(1 + s), (24)

pu(s) =
e−s(1 + s)

2
. (25)

Importance: As in any zero or near-zero variance random walk derivation, we begin with the im-
portance function, which in the present case is the probability to eventually escape the medium (after
any number of subsequent collisions) upon entering a collision at depth x. Because the scattering is
isotropic, the importance function W (x) is independent of the incoming direction of the particle.

We can derive or estimate W (x) in a number of ways. We could tabulate a discrete numerical approx-
imation of W (x) for a given absorption level by taking the mean escape probability of some number
of unguided random walks, each beginning in some narrow interval of depths x0 ∈ [x, x + dx]. Alter-
natively, by reciprocity, we could sample a suitably weighted uniform surface source and tally collision
densities in narrow depth intervals within the medium. We have chosen a problem which admits an ex-
act and very simple importance function in order to clearly illustrate the subsequent steps in determining
the full guided walk. However, all of the following principles apply to any approximate tabulated or
fitted function W (x).

We now derive the exact escape probability for our problem from the Wiener-Hopf integral equation that
applies to the collision rate density inside the volume. The details of this derivation are not essential
to the guiding sampling that follows, but we include these details for completeness. The Wiener-Hopf
integral equation for the collision rate density C(x) with a unit Dirac delta of initial collisions at depth
x0 is

C(x) = δ(x− x0) + α

∫ ∞
0

C(x′)KC(x− x′)dx′. (26)

The displacement kernel KC for Gamma-2 flights in 3D with isotropic scattering follows from [d’Eon



and McCormick 2019; d’Eon 2019b]

KC(x) =
1

2

∫ 1

0

pc (|x|/µ)
1

µ
dµ =

1

2
e−|x|, (27)

which is the Picard/Lalesco kernel [Picard 1911]. From the Fourier transform of the kernel

K̃C(t) ≡
∫ ∞
−∞

KC(x)eixtdx =
1

1 + t2
(28)

we immediately have the Green’s function (the solution to Eq.(26)) in terms of the Chandrasekhar H
function for the problem. In general, H is given uniquely by [Ivanov 1994]

H(z) = exp

(
z

π

∫ ∞
0

1

1 + z2t2
log

[
1

1− α K̃C(t)

]
dt

)
, Re z > 0. (29)

For the Picard kernel we find [d’Eon and McCormick 2019]

H(µ) =
(1 + µ)

(1 + µ/ν0)
(30)

where ν0 is the discrete eigenvalue of the transport operator, the unique positive solution of the disper-
sion equation,

1− αK̃C(i/ν0) = 0, ν0 =
1√

1− α
. (31)

If we define the Laplace transform

Lx [f(x)] (s) ≡
∫ ∞
0

f(x)e−sxdx, (32)

then we have, from Ivanov ([1994], Eqs. (19) and (21)), that the double Laplace transform of the Green’s
function is

¯̄G(s, s0) = Lx [Lx0
[G(x, x0)]] (s, s0) =

H(1/s)H(1/s0)

s+ s0
. (33)

Inverting both Laplace transforms gives the Green’s function G(x, x0), which is the rate density of
collisions in the system at x due to the initial collision at depth x0. However, we only need to invert one
of the Laplace transforms, because we want the total rate of collisions inside the entire half space, which
is conveniently given when s = 0 in Eq.(33). To find the total collision rate 〈C(x0)〉, we therefore take
the inverse Laplace transform of ¯̄G(0, s0) with respect to s0,

〈C(x0)〉 = L−1s0

[
H(∞)H(1/s0)

s0

]
(x0) = L−1s0

[
(1 + s0)ν20
s0(s0ν0 + 1)

]
(x0)

= ν0

(
ν0 − (ν0 − 1)e−

x0
ν0

)
(34)

where here we have usedH(∞) = 1/
√

1− α [Ivanov 1994]. The mean absorption per collision is 1−α,
and there are a mean number of collisions given by 〈C(x0)〉, and so the mean energy not absorbed in the
system is (and by normalization, the escape probability) is 1− (1− α)〈C(x0)〉, giving our importance
function for the problem,

W (x) =

{
(ν0−1)e

− x
ν0

ν0
, x ≥ 0

1 x < 0
(35)



Eq.(35) is, in fact, the exact same importance function for the exponential half rod example above
(Eq.(9)).

The last quantity we need for deriving the zero variance walk is the expected value of our estimator for
a single particle arriving at the boundary along cosine 0 < µi ≤ 1 to the x axis. The known albedo for
the problem is [d’Eon 2019b]

R(α, µi) =

∫ ∞
0

pu(s)W (sµi)ds =
α
(√

1− αµi + 2
)

2
(√

1− α+ 1
) (√

1− αµi + 1
)2 . (36)

Initial Free-Flight Distance: Guided sampling of the initial free-flight distance s1 is found from nor-
malizing the product of the uncorrelated-origin FPD and the importance function at depth µis yielding

p1(s, µi) =
pu(s)W (µi s)

R(α, µi)
= e
−s
(
µi
ν0

+1
)
(s+ 1)

(
µi
ν0

+ 1
)2

µi
ν0

+ 2
(37)

Using three independent uniform random variates ξ1, ξ2, ξ3, we can sample this as a sum of an expo-
nential and an Erlang-2 distribution,

s1 =

{
−m(µi) log(ξ2), ξ1 <

1
1+m(µi)

−m(µi) log(ξ2ξ3), else
(38)

where
m(µ) =

1

1 + µ
ν0

(39)

is a path-length stretching factor.

Guided Direction Sampling: Let us define the new angular importance function

Wo(x, µ) =

∫ ∞
0

W (x+ µs)pc(s)ds (40)

for leaving a collision. This function takes the analog probability pc(s)ds that the next collision is within
ds of s away from the starting position, and multiplies by the probability W (x+ µs) of escaping after
collision there. Integration over all possible s then gives the mean probability of eventually escaping
the medium when leaving a collision at depth x in direction µ. Zero-variance direction sampling then
results from drawing outgoing direction cosines µ from the normalization of P (µ)Wo(x, µ). This is the
same general form we saw when deriving the initial path length but note here the different importance
function Wo. It is essential that each step in the zero variance derivation carefully consider the escape
probability immediately following the action that is being sampled, and to distinguish between pre/post
absorption and collision, or for hitting or leaving a Fresnel boundary, etc.

The analog direction cosine phase function is isotropic P (µ) = (1/2). We seek a guided direction
distribution P g(µ;x) = aP (µ)Wo(x, µ) where constant a is chosen to achieve normalization∫ 1

−1
P g(µ;x)dµ. (41)

After some calculations in Mathematica, we find

P g(µ;x) =


v2−1

2(µ+ν0)2
, µ > 0

(ν0+1)

(
e
z( 1
µ

+ 1
ν0

)(µ(µ2+2µν0+ν0)−(µ+1)z(µ+ν0))+µ(ν0−1)ν0

)
2µν0(µ+ν0)2

, µ < 0.
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Figure 8: The zero-variance walk in 3D with Gamma-2 flights samples upwelling µ < 0 collisions more
often than downwelling ones. Nearer the boundary the upwelling distribution flattens into a uniform
distribution because all directions lead to escape with negligible attenuation. The downwelling direction
sampling is independent of depth x.

Remarkably, the angle selection in the downward hemisphere (away from the boundary µ > 0) does
not depend on the depth x of the particle. This is because the importance function is a pure exponential.
Gamma-2 random flights are the unique distribution pc(s) that produce this result in 3D under isotropic
scattering.

To sample this distribution over outgoing cosine µ ∈ [−1, 1] we split the sampling into the downwelling
(+) and upwelling (-) hemispheres. Because the downwelling direction sampling is independent of
depth, the total probability of choosing a downwelling direction must too be depth-independent and,
indeed, we find

p+ ≡
∫ 1

0

P g(µ;x)dµ =
1

2

(
1−
√

1− α
)
. (42)

Choosing a downwelling direction with probability p+ we need to sample a direction cosine µ from

P g(µ;x)

p+
=
ν0(ν0 + 1)

(µ+ ν0)2
, 0 < µ < 1. (43)

From CDF inversion we find a downwelling cosine µ+ is sampled using

µ+ =
ν0 + ξ

1 + ν0 + ξ
(44)

where 0 < ξ < 1 is a uniform random variate.

Sampling upwelling direction cosines is more challenging. We need to sample from

P g(µ;x)

1− p+
=
µ (ν0 − 1) ν0 + e

x
(

1
µ+

1
ν0

) (
µ
(
µ2 + 2µν0 + ν0

)
− (µ+ 1)x (µ+ ν0)

)
µ (µ+ ν0) 2

with CDF ∫ k

−1

P g(µ;x)

1− p+
dµ =

(k + 1)

(
ke
x
(

1
k+

1
ν0

)
+ ν0

)
k + ν0

, −1 < k < 0. (45)



We did not find an exact sampling procedure for this distribution but found 3 iterations of Newton’s
method started at µ = −0.5 very accurate for the limited testing we undertook.

General Free-Flight Sampling: For downwelling directions we find a simple guided free-path length
distribution by normalizing pc(s)W (x+sµ), similar to the initial free-path length procedure above, but
with pc(s) instead of pu(s) because the particle is leaving a collision and not a deterministic location
on the boundary. We find,

pgc(s;x, µ) =
se−

s
m(µ)

m(µ)2
, 0 < µ < 1, (46)

which is a stretched Gamma-2 distribution with factor m given in Eq.(39) that is easily importance
sampled via

s+ = −m(µ) log(ξ1ξ2). (47)

Note how similar this is to Asymptotic/Dwivedi guiding in the classical 3D half space. This is a di-
rect generalization of the exponential transform that was the original guiding tool of choice in neutron
transport literature [Dwivedi 1982]. Here, we find an analogous stretching of the intercollision free-path
distribution, the Gamma-2 transform, appearing in the exactly-zero-variance walk.

For the upwelling directions, we again find the guided free-path length distribution by normalizing
pc(s)W (x+ sµ), but find∫ ∞

0

pc(s)W (x+ sµ)ds

=

e−
x
ν0

(
µ (ν0 − 1) ν0 + e

x
(

1
µ+

1
ν0

) (
µ
(
µ2 + 2µν0 + ν0

)
− (µ+ 1)x (µ+ ν0)

))
µ (µ+ ν0) 2

Past s = −x/µ we will escape the boundary, so we only need to compute this probability and sample a
continuous depth in the case that we do not escape. We find the escape probability

pesc(x, µ) =

∫∞
−x/µ pc(s)W (x+ sµ)ds∫∞
0
pc(s)W (x+ sµ)ds

=
(µ+ ν0) 2(µ− x)e

x
(

1
µ+

1
ν0

)

µ (ν0 − 1) ν0 + e
x
(

1
µ+

1
ν0

)
(µ (µ2 + 2µν0 + ν0)− (µ+ 1)x (µ+ ν0))

. (48)

If we sample to stay inside the medium, using a random choice ξ > pesc(x, µ) then we sample a
free-path length distance s from

pgc(s;x, µ) =
pc(s)W (x+ sµ)∫∞

0
pc(s)W (x+ sµ)ds

= − µs (µ+ ν0) 2e−
s(µ+ν0)
ν0

ν0

(
e
x
(

1
µ+

1
ν0

)
(µν0 − x (µ+ ν0))− µν0

) , −1 < µ < 0. (49)

We can sample this by CDF inversion finding

s =

ν0

(
−W−1

(
ξ

(
e
x
(

1
µ+

1
ν0

)
−1
(
x
(

1
µ + 1

ν0

)
− 1
)

+ 1
e

)
− 1

e

))
− ν0

µ+ ν0
(50)
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Figure 9: The probability of directly escaping the medium with no further collisions pde(x) when
leaving a collision at a depth x in the half space. The guided walk prefers direct escape with increasing
probability as the single-scattering albedo α reduces. For the classical unguided/analog walk, the direct
escape probability is independent of α and equal to 1/2 at the boundary x = 0.

where W−1(x) is a Product Log function.

If an escape is sampled, we incur one last weight factor using an expected value optimization, the
ratio of the analog escape probability to the corresponding guiding escape probability. From depth x
along direction −1 < µ < 0 we escape along the final path length of d = −x/µ. The analog escape
probability leaving a correlated event (the last collision) is then Xc(d). The weight factor for escape is
thus

wesc =
Xc(d)

pesc(x, µ)
. (51)

This completes the derivation of the zero variance walk, and illustrates all of the essential steps in
deriving an exact or near-zero-variance walk for escape a 3D half space with no Fresnel interactions at
the bounadry.

Translationally-Invariant Guiding with Exit Resampling: Our derivation above has taken a
purely sequential approach for determining the guided walk: a complete free-path-length distribution is
determined and sampled, and then a phase function distribution, and back and forth until escape. This
has led to rather complicated distributions in the upwelling hemisphere due to the discontinuity in the
importance function past the boundary. It turns out that many of these complexities can be avoided if
we instead sample directions and displacements assuming a non-truncated exponential importance that
now extends upward past 1 outside of the volume,

W (x) = e−x/ν0 . (52)

Regardless of initial depth, the guided displacement and direction sampling steps using this importance
function reduce to the downwelling equations above but for all directions −1 < µ < 1. The angular
distribution that we sample over the full sphere is now the generalized discrete Case eigenfunction for
our Gamma-2 flight [d’Eon 2019b]

φ(µ, ν0) =
c

2

(
1

1 + µ/ν0

)2

. (53)



With CDF inversion we find sampling of outgoing polar angle µ from

−−2ν0ξ + ν0 + 1

ν0 − 2ξ + 1
, (54)

where ξ ∈ [0, 1] is a uniform random variate. Given outgoing µ, displacement sampling follows from
Eq.(46) for all −1 < µ < 1. The probability that this procedure escapes the volume over all possible
outgoing directions is (using Eq.(48))

pescφ(x) =

∫ 0

−1
φ(µ, ν0)pesc(x, µ)dµ =

(ν0 + 1) e

(
1
ν0
−1
)
x

2ν0
(55)

and it can be shown that this exactly matches the probability of the more complicated scheme above.
The problem is, however, that the outgoing directions leaving the medium, when escape is sampled, are
not the distribution required for zero variance because we messed with the importance function outside
of the volume. However, we can compute the exitant cosine distribution that the zero-variance walk
does produce when starting from x and leaving in a single step,

pe(x, µ) =

∫∞
0
pc(s)Θ(−x− sµ)ds∫ 0

−1
∫∞
0
pc(s)Θ(−x− sµ)dsdµ

=
e
x
µ+x(µ− x)

µ
, (56)

where Θ(x) is the Heaviside Function. We can sample direction cosine µ from Eq.(56) using

µ = − x

Wproductlog

(
− exx
ξ−1

) (57)

where Wproductlog is the product log function, typically written as W . Combining these two results, the
walk proceeds with the unclamped distance and angle decisions until escape is sampled. Then we back
up to the last collision prior to escape, resample an outgoing direction using Eq.(56) and jump to the
boundary along that path. The expected-value weight calculation for this escape sampling is a ratio of
angle pdfs times a ratio of escape pdfs,

wesc =
1/2

pe(x, µ)

Xc(−x/µ)

pescφ(x)
. (58)

We will see in the next section that this modified scheme is closely related to asymptotic guiding in a
classical 3D half space and that resampled escape can greatly reduce the variance relative to the method
originally presented for rendering [Křivánek and d’Eon 2014].

It is also fascinating to note that we have just derived two new zero variance estimators for classical
scattering in the half rod, our first example above. Observe that if we enter the Gamma-2 half space by
sampling a uniform (Lambertian) surface source, that the expected analog distance of the first collision
is the simple exponential

2

∫ 1

0

pu(x/µ)dµ = e−x. (59)

From here, all displacements in the 3D space when projected onto the x-axis exactly behave as the
classical exponential walk in 1D. And the final albedo of the 3D Gamma-2 half space under diffuse
uniform illumination is exactly the same as the 1D classical rod:

2

∫ 1

0

R(µ)µ =
2

α

(
1−
√

1− α
)
− 1 (60)



in agreement with (10). We also see the same probabilities for upwelling and downwelling directions
in all three walks. This is a great example of how an importance sampling process can be achieved in
many different ways with auxiliary dummy variables that place the simulation in a higher dimension
space.

Further Considerations: We hope that our zero-variance estimators for the Gamma-2 GRT can
add value in traditional rendering of classical media, despite the different free-path statistics. This
hunch is based on limited testing of rendering objects with the diffuse BRDF for Gamma-2 GRT and
comparing to Chandrasekhar’s H-function BRDF for the classical medium. Both transport BRDFs
exhibit a dusty appearance and significantly differ from the “CG” Lambertian appearance. We notice
very similar appearance between the Gamma-2 and exponential BRDFs (Figure 10), suggesting that
Gamma-2 may be a generally useful replacement for classical transport. The are several other reasons
to consider this proposal. In addition to having an exact zero-variance estimator for thick flat geometry,
the BRDF for Gamma-2 GRT also has a explicit expression, which we call the diffusion transport
BRDF [d’Eon 2019b]

fr(θi, θo) =
α

4π

(
H(µi)H(µo)

µi + µo

)2(
µ2
i + 3µiµo + µ2

o

µi + µo
− U1

2(1 + µi)2(1 + µo)2

)
(61)

where

U1 =
(
1−
√

1− α
) (
µ2 + 3µiµo + 2µo

) (
µ2
o + 3µiµo + 2µi

)
+

αµiµo
µi + µo

(
µ3
i + µ3

o + µiµo
(
2
(
µ2
i + µ2

o + 1
)

+ 6µiµo + 3(µi + µo)
))

(62)

with the Picard H function given in Eq.(30), and µi = cos θi, µo = cos θo. This avoids the integrals
required to evaluate the Milne H function in Chandrasekhar’s BRDF. Also, this BRDF admits a simple
closed-form albedo mapping. The diffuse albedo R of the Gamma-2 halfspace under uniform illumina-
tion is

R =
α(√

1− α+ 1
)2 (63)

which easily inverts to single single-scattering albedo α from diffuse albedo R,

α =
4R

(R+ 1)2
. (64)

There may also be opportunity to apply some of the sampling distributions in this zero variance walk to
different types of media with some appropriate fitting procedures.

6.6 Asymptotic (Dwivedi) Guiding
In the last two examples, we saw exact zero variance walks from absorbing half spaces with isotropic
scattering. These were possible because the importance functions were known exactly and were simple
expressions that admitted the required sampling manipulations. This is atypical of practical problems,
even in plane geometry, so now we turn our attention to scenarios where we are forced to assume some
approximate function for importance-to-escape; specifically, the approximation that results from taking
the rigorous asymptotic diffusion term from the exact solution and discarding the transient portion. This
method is highly effective for shielding calculations through optically thick shields because far from
the boundaries, the transient terms in the exact importance function fall off and the resulting guiding
becomes exact. In our previous work we attributed this method to Dwivedi [1982] but it appears that
the original proposal of asymptotic guiding was earlier [Lanore 1971; Marchuk et al. 2013]. See also
several more recent works on the topic [Meng et al. 2016; Medvedev and Mikhailov 2008].



(a) Lambertian (b) Chandrasekhar (c) Diffusion Transport

Figure 10: Comparison of 3 diffuse BRDFs. Chandrasekhar’s BRDF and the new diffusion transport
BRDF for Gamma-2 GRT look very similar, but the latter has a zero-variance random walk and simple
albedo mapping.

Motivation Like the examples above, the asymptotic guiding zero-variance method begins by first
trying to find an exact importance-to-escape function W (x). For classical exponential transport in a 3D
half space with isotropic scattering the Milne kernel arises and is singular. Here, the exact importance
function for escape is not a simple exponential. Instead, we find Case’s exact solution involving a
discrete asymptotic diffusion term (an exponential with a complicated constant) and a transient term
that is an integral of exponentials [Case 1960; McCormick and Kuščer 1973; d’Eon 2016; d’Eon and
McCormick 2019]. This relates to a rich set of results that began with observations by Davison [2000]
and later expanded upon by Case [1960]. The importance function that results can also be equivalently
found via the Wiener Hopf method. The final solution is expressed as a Fourier inversion, and via
contour manipulation the discrete portion of the answer pops out as the residue of a pole, creating a
diffusion result—but not the P1 or “classical” diffusion result—the diffusion length is different. For
anisotropic scattering the same things happens but more than one discrete diffusion term appear as the
phase function gets increasingly peaked.

We now have the exact answer at hand, but an issue arises. The transient portion of the importance
function involves integrals of eigenfunctions that are singular in direction4 and sometimes negative and
so are not amenable to guiding. This has motivated the approximation of discarding the transient term
and assuming the discrete term well approximates the full solution. For escaping a 3D half space, this
becomes simply the translationally invariant W (x) = e−x/ν0 , where ν0 is the discrete eigenvalue of the
Milne kernel.

Discrete Eigenvalue Having made the approximation for W (x) we proceed with the derivation
analogous to the previous example for Gamma-2 GRT. The diffusion length we want follows from
normalization of the guided angle sampling distribution

φ(µ, ν0) =
α

2

∫ ∞
0

pc(s)e
−sµ`/ν0 =

c

2

(
1

1 + µ/ν0

)
. (65)

Normalizing this polar angle distribution produces the dispersion equation

1 =
αν0 tanh−1

(
`
ν0

)
`

. (66)

4The eigen expansion of the angular collision rate and radiance inside the volume must include singularities and generalized
distribution “functions” because of the reduced-intensity term from the source at the boundary, which is a delta in direction. In
fact, even with a diffuse source at the boundary, the exact radiance in the volume at each depth is expressed as a superposition of
the singular distributions even though the final result is smooth.



Our approximate importance W (x) follows from finding the positive real root ν0 of this equation.
Eq.(66) is often called a transcendental equation but actually has a closed-form solution [Siewert 1980;
d’Eon and McCormick 2019]. The exact solution is not numerically convenient, so we recommend the
following approximation, with a relative error bounded by 0.0001

ν0 ≈ `
1√

1− α2.44294−0.0215813α+ 0.578637
α

. (67)

Equation (67) is an order of magnitude more accurate than other piecewise approximations [Winslow
1968; Harel et al. 2020].

The remaining details of the asymptotic guiding scheme are found in several works [Dwivedi 1982;
Křivánek and d’Eon 2014; Meng et al. 2016; Lanore 1971; Marchuk et al. 2013]. We will touch upon
various select topics related to the method and refer the reader to these works for full details.

Weight Factor Simplification It is worth mentioning why this particular form of approximate im-
portance function works so well and why, despite the approximation, undesired weight fluctuations that
plagued earlier attempts to apply the exponential transform don’t arise for this scheme. This happens
because of a synergistic cancellation between weight factors in the direction and step length sampling
steps [Dwivedi and Gupta 1986]. Referring now briefly to the notation in [Křivánek and d’Eon 2014],
the weight adjustment when sampling stretched transition distance picks up a multiplicative weight
correction of

ws =
e−s

σ′te−sσ
′
t
. (68)

The angle selection incurs a multiplicative weight correction of

wµ =
1

2

1
α
2

1
1−µ/ν0

. (69)

The eigenfunction φ(µ, ν0) that appears in the denominator of wµ mostly cancels with the σ′t in ws.
When using fitted or tabulated distributions for angle and step lengths that do not exhibit this precise
cancellation there can be low number of paths where significantly high particle weights arise.

We can further simplify the final weight wo after angle selection, absorption and transition, expressed as
a multiplication of the previous weight wi before collision with the other weight adjustments, including
the single-scattering albedo multiplier α, sees significant cancellation, giving simply

wo = wi ∗ α ∗ ws ∗ wµ = wi ∗
ξ
−1+ ν0

σt(ν0−µ)
s

σt
(70)

where ξs was the random number used to sample displacement s.

Curved Geometry and General Lighting For general shapes, multiple importance sampling
(MIS) can be used to combine analog/unguided sampling decisions with guided ones [Křivánek and
d’Eon 2014]. This avoids the increased variance in regions with high curvature where particles exit
the medium where the importance function was expected to be low. Figure 11 illustrates the impact of
this combination of classical and guided estimators. Figure 12 shows the performance of the method
under general lighting. Despite not sampling the product of BSSRDF and lighting, the reduction of the
absorption variance is significant. Also, the average path length is reduced in guiding paths out of the
medium more often than the classical walk. The histograms over path-length for both methods are com-
pared in Figure 14 and examples scattering histories are shown in Figure 13 to more clearly illustrate
how increased absorption alters the set of sampled paths. For expanded results on handling general light
and geometry see [Meng et al. 2016].



(a) Classical (36s) (b) 25% Guided (33s) (c) 50% Guided (29s) (d) 75% Guided (25s) (e) 100% Guided (21s)

Figure 11: MIS between guided and classical sampling.

classical sampling asymptotic guiding (equal time)

Figure 12: A gray material with isotropic scattering and single-scattering albedo of 0.943 under a
variety of illumination conditions. The images rendered with classical sampling use 100 samples/pixel
while with guided sampling can perform 50% more samples/pixel in the same time. The guided sam-
pling assumes uniform hemispherical illumination everywhere on the surface and flat geometry yet still
improves the convergence rate of random walk SSS for curved geometry under arbitrary illumination
conditions.

6.6.1 Fresnel Boundaries

Largely missing from the zero-variance literature is the role of general BSDFs at medium boundaries
and the impact of this on the zero-variance scheme. To see the influence of BSDF interactions on
the derivation, consider the half space: in the downwelling directions the procedure is as before. We
can think of upward angle selection as before but now the probability to leave a collision in an up-
welling direction depends upon the more complicated result of importance from future collisions up
to the boundary plus a new term that considers reflections back into the medium and the total escape
probability, which is now a general BSDF integral over the exitant hemisphere,∫

4π

fs(ωi, ω)|ω · ~n|Wb(ω)dω (71)



(a) classical (any α) (b) Guided α = 0.99 (c) Guided α = 0.9 (d) Guided α = 0.7 (e) Guided α = 0.3

Figure 13: In each subfigure we show 2000 randomly sampled paths created using either classical
volumetric sampling (a) or the Dwivedi sampling scheme (b-e). The figures have differing scales—the
red arrow is one mean-free-path long and indicates the illumination position and direction. All paths
continue inside the semi-infinite medium with isotropic scattering until an escape is sampled. Each
path is rasterized with the same opacity, regardless of sample weight. Irrespective of absorption level
(the value of α), the classical scheme samples the wide distribution of paths shown in (a), even though
many of these paths are heavily absorbed and contribute negligible energy to the final result. Russian
roulette helps avoid this wasteful sampling, but increases variance of each sample as a consequence.
The Dwivedi sampling scheme we use adapts to the absorption levels of the medium and creates shorter,
important paths more often, while simultaneously decreasing the variance of each sample.

where we define Wb(ω) as the importance function that is the probability that a particle leaving the
boundary along direction ω eventually escapes, which is

Wb(ω) =

{∫∞
0
pu(s)W (sµ)ds, ω is downwelling

1, ω is upwelling.
(72)

We also have a new sampling decision to make upon jumping to the boundary during the walk, which is
guided sampling of the BSDF. As in the derivation of the other steps, we start with the analog sampling
distribution, the BSDF itself, and multiply it by the corresponding importance function Wb(ω) and
normalize the result. Thus, having arrived at the boundary from inside from direction ωi we must
sample guided direction ω leaving the boundary from the normalization of∫

4π

fs(ωi, ω)Wb(ω)| cos θo|dω. (73)

For anything but a smooth Fresnel interface, this becomes a complicated problem to sample analytically.
Novel methods will be required to efficiently perform this sampling for rough dielectric interfaces with
multiple scattering [Dupuy et al. 2016; Heitz et al. 2016].

6.6.2 Asymptotic Guiding with Exit Resampling

We briefly tested the exit resampling approach from the Gamma-2 GRT estimator in the case of clas-
sical exponential transport in a 3D half space with isotropic scattering and indexed-matched smooth
boundary. The approach uses the procedure described in prior work [Křivánek and d’Eon 2014; Meng
et al. 2016] but when the translationally-invariant sampling produces escape, we backup and resample
outgoing polar angle, now from

e
x
µ+x

1− exxE1(x)
(74)

where E1(x) is the exponential integral function. We sampled this using naive rejection and performed
some tests viewing flat patches of half space under uniform white illumination (Figure 15). We found
the reduction in variance for resampled Dwivedi vs Dwivedi ranging from 10 times lower for α = 0.95
to 45 times lower for α = 0.3. We expect the additional sampling time is mostly due to the naive
rejection sampling.
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Figure 14: Comparison of the distributions of path lengths (in terms of path segment count) gener-
ated by classical sampling (without Russian roulette) and our application of Dwivedi sampling for the
problem of reflection of normally-incident illumination from an isotropically-scattering semi-infinite
medium. The zero-variance-based Dwivedi sampling scheme generates much shorter paths on average
whilst simultaneously decreasing variance (as opposed to Russian roulette). The method automatically
adapts to the single-scattering albedo α of the medium.

This suggests that much of the remaining variance in asymptotic guiding is not so much from errors
in the importance function inside the medium but from not clamping it to 1 outside. While the exit
resampling procedure would not be easy to apply in general curved geometry, this result suggests that
finding a clamped exponential sampling scheme would be well worth the effort.



2.29443 3.31366 4.92399 6.67231 10.0372 14.0874
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Figure 15: Normally-viewed patches of a 3D half space under uniform white illumination rendered
with three estimators, classical (top), standard Dwivedi (middle), and Dwivedi with exit resampling
(bottom). Single scattering albedo from left to right: 0.3, 0.5, 0.7, 0.8, 0.9, 0.95. Each patch is 50 by 50
pixels with 5 samples per pixel. Timings in seconds above each patch. Gamma correction of 2.0.

6.6.3 Asymptotic Guiding in GRT

In Section 6.5.2 we considered a form of GRT in 3D with Gamma random flights that admits an exactly
zero-variance walk analytically. We also saw that asymptotic guiding was not a zero-variance walk,
but could be corrected with exit resampling. We chose this form of GRT because of its mathematical
properties. It is the unique form of GRT in 3D with isotropic scattering where the collision density inside
the volume exactly satisfies a diffusion equation [d’Eon 2013]. Diffusion is not an approximation in
Gamma-2 3D!. While helpful for illustrating how guided walks are derived, we are unaware of any
specific microstructure that would motivate these exact free-flight statistics. It likely corresponds to a
short-length negative correlation of some kind. For more general forms of GRT motivated by observed
spatial variability in the volume coefficients, diffusion will not be an exact answer and asymptotic
guiding or alternative approximate importance functions will be needed.

One popular [Davis 2006; Wrenninge et al. 2017; Jarabo et al. 2018; Bitterli et al. 2018] and practical
GRT model for random media that includes long-range correlations and power-law asymptotics, while
avoiding the more complex Mittag-Leffler functions that satisfy fractional diffusion equations [Liemert
and Kienle 2018], derives from a continuum model of random scattering-particle number densities
drawn from a Gamma distribution, producing [d’Eon 2018; Jarabo et al. 2018]

pc(s) = a(a+ 1)`(a`)a(a`+ s)−a−2, a > 0 (75)

where the mean free path between collisions is ` and a shape parameter a > 0 adjusts the correlation
between scattering events with classical exponential media recovered in the limit a→∞. The intercol-
lisions distribution pc(s) does not decay exponentially due to the long-range nature of the correlations.
For isotropic scattering in 3D plane geometry, this leads to a discrete Case eigenfunction derivation
of [d’Eon 2019a]

φ(µ, ν0) =
α

2

∫ ∞
0

pc(s)e
−sµ/ν0 =

α

2
(a+ 1)e

aµ`
ν0 Ea+2

(
a`µ

ν0

)
, 0 < µ ≤ 1. (76)

The integral diverges, however, in the upwelling directions, so the exponential, and unbounded, impor-
tance function could only be used to guide downwelling direction sampling. This illustrates a failure



of the approach of Case that assumes exponentially-decaying kernels. For this class of flights, the dis-
persion equation admits a pair of complex roots, but no real ν0 eigenvalue exists. It is an interesting
open problem to investigate what asymptotic importance function might apply in this setting and if the
Mittag-Leffler functions that generalize the exponential distribution make an appearance here.

6.6.4 Anisotropic Scattering

Including anisotropic scattering in guiding-to-escape walk derivations complicates things substantially.
The importance function for escape upon entering a collision depends on the cosine µ as well as the
position. The direction sampling is much more complicated, requiring importance to leave a collision
Wo(x, ω) in terms of general direction and to sample the product of this distribution with the phase
function, for which the normalization factor is typically impossible to determine analytically. To address
this issue Lanore [1971] offers some insight. We recommend Ueki and Larsen [1998] for more details
on linearly and quadratrically-anisotropic phase functions and procedures for sampling the product of
the phase function and the importance function, and also [Marchuk et al. 2013].

6.7 General Tips
Validating the Walk When deriving analytic importance functions or fitting tabulated data from
adjoint Monte Carlo simulation it can be helpful to ensure the correctness of these solutions using
forward Monte Carlo simulation to simulate exactly the probability that is needed at a given sampling
step. For example, if we require W (x, ω), the probability for a single particle to escape the medium
upon entering a collision at x into direction ω, then we would start a Monte Carlo random walk at x that
begins by sampling a collision right away, applying α and sampling the phase function with direction
ω before stepping through the volume. Testing this for a variety of absorption levels αs, depths x and
directions ω will validate any adjoint fittings or derivations. If W is off by even a small forgotten factor
of α, the resultant walk will continue to show considerable variance.

Another debugging tool that we found helpful is to check at each collision entry that wW (x, ω) = R.
When an implementation that should be zero variance is not, this can help identify what step is causing
the issue. This can also help identify what steps in an almost-zero-variance walk are causing the most
variance.

Finally, the walk should always reduce to the classical method of analog sampling plus implicit capture
when absorption is removed, α = 1.

Russian Roulette Russian roulette is a common device for reducing the lengths of long random
walks when the weight becomes low [Arvo and Kirk 1990]. However, if the importance function and
its use to guide the random walk are both accurate, then it is most likely that Roulette will only increase
variance and possibly reduce efficiency. Hero wavelength sampling and MIS complicate this conclusion,
however. We recommend undertaking a thorough analysis for your particular problem to determine how
and when to employ roulette with guided walks.
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