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1 Non-Classical Transport Theory with Memory

It is of considerable interest to expand the applicability of transport theory to wider domains by considering
non-classical transport models. Non-exponential random flights are one such example [1,2]. Enhanced
backscattering (due to the opposition or hotspot effect) is not exhibited by classical transport theory. This is
not a wave/interference phenomena—the effects are found in purely geometrical optics simulations of
discrete random media [3,4]. We investigate the possibility of modifying the method of invariant imbedding
to incorporate a notion of memory. We perform this analysis in the rod model where the effects of memory
are exhibited more strongly than in any other possible geometry. This is also a domain where explicit
realizations of the entire rod medium are practical to both randomly sample and to efficiently compute
transport solutions within. This is critical to the validation of our transport solution, which we show to be
in good agreement with this ground-truth simulation. Being able to predict the effects of discrete random
media without the burden of heavy random media realizations and tracing [3] is our primary motivation.

Classical principle of invariant imbedding: We consider time-independent monoenergetic transport in the
rod model [5]. Let R(x) be the reflectance from a homogeneous rod of thickness x with interaction
coefficient Σt and scattering kernel {F,B}. We construct a differential equation for R by considering how
R changes as a rod of diminishing thickness ∆ is added to a rod of thickness x (Figure 1a). A glass plates
theory analysis leads to the new reflectance of the thicker rod in terms of the original rod reflectance, R(x).
The probability of one scatterer existing in the small rod segment of length ∆ is

p1 = Σt∆ + o(∆). (1)

The probability of multiple scattering events within the segment of thickness ∆ involves terms of order at
least (Σt∆)2 so it is covered by o(∆). Computing R and T for the small segment gives [5] a differential
equation for the reflectance of a rod of thickness x:

dR(x)

dx
= BΣtR(x)2 +BΣt + 2FΣtR(x)− 2ΣtR(x). (2)

The Albedo problem for semi-infinite rod with isotropic scattering (F = B, single-scattering albedo of
c = F +B)

lim
x→∞

R(x) =
2
(
− c

2 −
√

1− c+ 1
)

c
. (3)

A Quantum Invariant Imbedding Principle: We now repeat the invariant imbedding analysis for the
reflectance of a finite rod, but require that the occurence of a single scatterer in the thin rod of length ∆
influence all orders of interreflections between the two rods. The invariant imbedding analysis is now
different (see Figure 1a): we have two glass plates calculations. One, with R1 = 0, T1 = 1 with probability
p0 = 1− (Σt∆ + o(∆)) and one with R1 = B, T1 = F with probability p1 = Σt∆ + o(∆). R2 = R(x) in
both, leading to

dR(x)

dx
=

(
B Σt − ΣtR(x) +

F 2 ΣtR(x)

1−BR(x)

)
. (4)
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Figure 1: (b) Reflectance and transmittance as a function of rod length x. Dots: Memory Monte Carlo, thick curve: our new memory solution, dashed: classical transport theory (c) Albedo
of a semi-infinite rod with isotropic scattering (single-scattering albedo of c) for classical transport theory (dashed) vs. memory transport theory (thick).

This can be solved using standard ODE techniques but involves the inverse of a function with no simple
analytic form. However, it is easily inverted numerically. The solution to the albedo problem for a
semi-infinite rod with isotropic scattering (for comparison to Equation 3), however, is quite simple,

lim
x→∞

R(x) =
1−
√

1− c2

c
. (5)

Comparison of the two transport models: We test the predictions of our new transport derivations using a
Monte Carlo estimator consistent with the thought process used to derive transport with memory. To form a
Monte carlo estimator for the memory model of a rod of length x, we start at one end of the rod and
repeatedly sample the distance to the next scattering location, but always in the forward direction. We
sample each next event using xi = − log 1−ξi

Σt
(where ξi are uniform random numbers in [0, 1)). We stop

when
∑

i xi > x. This gives an estimate for an integer number of scatters in the rod, i− 1, from which we
can easily compute a glass plates R(x) and T (x). Figure 1 b and c compares both forms of transport theory
including the Monte Carlo version of transport with memory, showing good agreement for the R(x)
prediction using the quantum invariant imbedding principle. The albedo problem solution shows significant
differences between classical and memory transport.
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