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Abstract

We present a dipole BSSRDF with modified diffusion asymptotics,
improved exitance calculations and consistent boundary conditions.
This BSSRDF improves significantly upon the classical dipole
model, requires negligible extra evaluation cost and is very easy to
adapt in new and existing subsurface scattering algorithms. While
not as accurate as a diffusion model using an extended source, such
as the recent quantized diffusion method, this dipole model is far
easier to implement and is of potential interest in some rendering
and measurement applications. We include a comprehensive quan-
titative comparison between the classical dipole and the “better"”
dipole as well as quantized diffusion and benchmark Monte Carlo
results for reference.

Keywords: BSSRDEF, dipole, translucent materials, modified dif-
fusion

1 Intro

The utility of physically-based reflectance models for generating re-
alistic computer generated images has been well demonstrated and
shows no sign of decline. Given the broad range of applications,
a wide array of reflectance models of varying accuracy continue to
see use. The tradeoffs between simplicity, computational cost, ease
of implementation and accuracy are subjective and vary highly with
the problem being solved, so having many well-evaluated options
will likely only extend the utility of physically-based reflectance
models as a whole. This note presents a broad evaluation of two
previous reflectance models for thick translucent materials and in-
troduces a new model—not the most accurate—but more accurate
than a previous model of similar complexity.

Accurately simulating the transport of light within translucent
materials is challenging. The bidirectional scattering-surface
reflectance-distribution function (BSSRDF) describing the scatter-
ing and bleeding of light through geometry resists exact solution,
even for the most basic cases such as flat dielectric materials with
a smooth boundary and a simple isotropic scattering process below
the surface. However, some useful approximations have been found
in this area based on diffusion theory.

We recently introduced a new diffusion-based BSSRDF for ren-
dering images of homogeneous (or layered) translucent materi-
als [D’Eon and Irving 2011]. In this previous work we pieced
together a number alterations/additions to now “classical” diffusion
methods. The goal was to extend the accuracy of the dipole and
multipole approximations (the method of images) to the widest pos-
sible range of materials (and layerings of materials) relative to an
error metric suitable for graphics. The evaluation of each indepen-
dent alteration to classical diffusion methods introduced in [D’Eon
and Irving 2011] was rather limited due to space limitations. It was
mentioned that many of these individual alterations could improve
upon previous methods, but this was not thoroughly demonstrated.
The purpose of this note is to fill this gap.

Here we consider the BSSRDF of d’Eon and Irving [2011] but with-
out the extended-source term. The benefit of doing so is to extend
the reach of improved diffusion asymptotics and Fresnel-consistent

n relative index of refraction
p number density of particles [m 3]
oy absorption cross-section [m?]
o scattering cross-section [m?]
Ua = Y4 pxOu | absorption coefficient [m™']
Us = Yk PkOsk scattering coefficient [m~1]
w. = (1 — g)us | reduced scattering coefficient [m~']
W = U+ Uq extinction coefficient [m~!]
W =yl +u, | transport coefficient [m™']
a = /1 single-scattering albedo
o =pl/ul reduced single-scattering albedo
g mean scattering cosine
D diffusion coefficient [m]
A reflection parameter
L(%, ®) radiance [W m~2 sr™']
Li(¥, @) incident radiance [Wm™2sr™1]

Table 1: Nomenclature

boundary conditions in graphics (and potentially in other fields
where the classical dipole expression repeatedly appears). The
resulting model remains a dipole, which is simple to write down
and evaluate (see Table 2) and avoids the complexity of the quanti-
zation of diffusion Green’s functions into discrete Gaussian sums.
Modification of any existing implementation of [Jensen and Buhler
2002] to use this new dipole should be trivial (whilst switching to a
quantized diffusion BSSRDF is not). The evaluation below should
make clear the potential gain in accuracy in doing so. The caveats
are that this new dipole still lacks the high-frequency components
of an extended-source BSSRDF, important for skin rendering. The
analogous “better multipole" would see a similar improvement in
accuracy (not demonstrated here) but would not be applicable to
materials thinner than several mean free paths without the extended
source term of [D’Eon and Irving 2011]. For the application of skin
reflectance one could certainly attempt to mimic the missing high-
frequency content of a dipole BSSRDF with an appropriate (and
likely non-physical) multilayer multipole model, but the complex-
ity tradeoff is then irrelevant, making quantized diffusion a more
attractive, versatile solution.

This is in no way an endorsement for not using an extended source
model. In fact, the results below help further demonstrate the im-
proved accuracy to be gained by taking the effort to implement a
BSSRDF like quantized diffusion. However, given the simplicity
of the better dipole and the non trivial effort required to implement
a quantized diffusion BSSRDF (and the additional optimizations
required to achieve a computational performance similar to either
dipole model), the current presentation seems relevant. Finally,
given the broad scope of evaluation and the use of benchmark open
source Monte Carlo code, we hope this note will also serve as a ref-
erence benchmark for any of the three analytic models we compare
below.

2 Improving upon the classical dipole

To render translucent materials using a BSSRDF S, exitant radiance
at a surface location ¥, in direction @, is computed by integrating



the incident radiance L;(x;, @;) with S:
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Since Grosjean [1958] it has been shown useful to separate light
(or neutrons) into reduced-intensity, single-scattering, and multiple-
scattering components, each treated separately,
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Here we only consider thick semi-infinite materials, so reduced-
intensity transmission S(¥) is irrelevant. Single scattering S(!) can be
computed using previous methods such as the technique described
in [Jensen et al. 2001]. The dipole model makes it appearance by
assuming that multiple scattering can be described using a diffusion
method of images solution to a 2D searchlight problem. If one
assumes that light arrives normal to the surface and computes only
the net flux leaving the surface at any distance r from the point of
illumination then the problem being solved is much easier. If we
also suppose that given the total flux leaving the surface at some
location we can approximate its angular shape to be Lambertian (or
Lambertian modulated by outgoing Fresnel shaping), then the full
8D BSSRDF can be replaced with a much simpler form [Jensen
et al. 2001]:
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where R(r) is a radially-symmetric diffusion profile R(r) computed
or measured using various methods and F; is a Fresnel transmittance
function. Equation 1 differs only slightly from the original seminal
introduction by Jensen et al. [2001]—we have included the miss-
ing normalization constant described in [D’Eon and Irving 2011]
(Cy is given below). Occasionally the Fresnel terms F; in Equa-
tion 1 are neglected to use Lambertian exitance shaping, or can also
be replaced by integrals of rough BRDFs to handle rough surface
boundaries, as proposed by Donner and Jensen [2005] (where an
analogous normalization term is also missing). Our main focus
here, however, is on the choice of R(r). The visual character of light
bleeding within the object and into shadow boundaries (as well as
the overall color of a material) is based primary upon the choice of
R(r).

We compare three different analytic diffusion profiles R(r),

e The classical dipole [Farrell et al. 1992; Jensen et al. 2001]
e A new better dipole model (defined below)
e Quantized Diffuion [D’Eon and Irving 2011].

The equations for the classical dipole and the new better dipole are
compared in Table 2 where the moments C; and C; of the Fresnel
function are given separately in Equation 2 (repeating the approx-
imations given in [D’Eon and Irving 2011]). Both of these dipole
models are compared to the quantized diffusion BSSRDF of d’Eon
and Irving [2011] and to Monte Carlo simulation, neither of which
are described here. The better dipole is derived by modifying the
classical dipole to use the diffusion asymptotics of Grosjean [1956],
the asymptotically consistent boundary conditions of Pomraning
and Ganapol [1995], and the diffusion-consistent exitance calcula-
tion of Kienle and Patterson [1997]. The physical reasoning for
adopting these alterations can be found in the mentioned works
and the discussion of d’Eon and Irving [2011]. The derivation is
straightforward—we simply present the final result and the com-
parisons.
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3 Model Comparisons

3.1 The various plots

The followings pages contain comparisons of four different esti-
mations of the radially-resolved exitance from a semi-infinite half
space illuminated by a monodirectional beam at normal incidence
(the 2D searchlight problem). The Monte Carlo reference solution,
shown as dots, uses MCML [Wang et al. 1995]. The classical dipole
model [Farrell et al. 1992; Jensen et al. 2001; Jensen and Buh-
ler 2002] is shown in red, the quantized-diffusion model presented
in [D’Eon and Irving 2011] is shown in orange, and the dashed lines
shown the better dipole model. The last page shows a single ma-
terial simulation with the various individual improvements turned
on/off so that their individual effects can be seen.

3.2 Single Scattering

The quantized-diffusion model added to a single-scattering calcu-
lation is shown is green (in this case the single-scattering result was
computed using numerical integration in Mathematica). We stress
again that the portion of the BSSRDF described by diffusion theory
(ie. by the dipole or quantized diffusion) does not attempt to include
single-scattering and should not. The attempt of classical diffusion
theory to incorporate single scattering is the primary cause for its
inaccuracy as absorption levels increase and near sources (more on
this and the success of the Grosjean modification is given in [D’Eon
and Irving 2011]). This is why all plots except green (which is
the only one which adds single-scattering to the analytic diffusion
result) differ from Monte Carlo for very small r, and also why the
classical dipole, shown in red, tends to consistently perform poorly
for low r. Given that the quantized diffusion result does not match
the dipole result in general and also given that the quantized diffu-
sion result when added to single-scattering does match Monte Carlo
quite well, it should then be clear that adding single-scattering to the
classical dipole (not shown) would not be accurate in general and
would not improve its performance.

The diffuse albedo reported in each plot is the one from the Monte
Carlo simulation and includes the energy of single-scattering (but
not specular) (and therefore is not necessarily close to the albedo of
the diffusion dipole functions themselves).

3.3 Discussion

Each page presents a single fixed absorption/scattering ratio and
a range of indices of refraction. Only the ratio of absorption to
scattering changes the total diffuse albedo, so it is only necessary
to consider the various ratios and not an array of combinations of
U, and ;. Each result is plotted in two forms, one “Gamma" plot
which is well suited for evaluating the performance of a 2D radial
convolution profile in the context of image synthesis, and a log plot
typical of other fields and for highlighting the performance of dif-
fusion methods far from the source, but potentially down-playing
enormous errors near the source.

The first few pages show incredibly low absorption levels. This
is a regime where single-scattering is a very small part of the to-
tal energy leaving the medium and also a regime where classical
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Table 2: Dipole BSSRDF comparison

diffusion theory is fairly accurate. Except for very near the point
of illumination (r = 0), all the models perform quite similarly and
are generally accurate. As the relative index of refraction increases,
however, the consistent boundary conditions and improved exitance
calculation of the better dipole are clearly more accurate. The per-
formance of the classical dipole degrades as absorption increases.
Once the absorption levels are such that the albedo is around 0.25
or less there are quite large errors near the point of illumination
and the log plots begin to show the improved accuracy of the mod-
ified asymptotics of Grosjean. The better dipole stays tighter to the
Monte Carlo solution throughout but still drop offs for very low r
because that energy has been pushed to a depth of 1 mean free path
before scattering. Single-scattering can bring back some of that lost
high frequency portion of the total scattered energy, but not all of it.

3.4 Conclusion

The better dipole globally outperforms the classical dipole, as was
to be expected—there is clear physical reasonsing for choosing the
asymptotics, boundary conditions and exitance calculations that it
uses. There is little cost in adopting the better dipole—no additional
exponentials or square roots are required, and the terms that change
most dramatically depend only on the index of refraction (typically
constant over a surface).

The conclusions of this evaluation are, however, firmly bound to
the assumption of isotropic scattering. As the phase function of the
scattering process diverges away from isotropic the proper decou-
pling from single-scattering goes out the window, for starters. It
also starts to make less and less sense to make the assumption of
normal incidence and to assume that the factorization of Equation 1
is at all valid. Should any of these models fair more or less accurate
in these scenarios seems of little interest as they will all fail in gen-
eral. However, far from sources after many scattering events have
occured the similarity relations do hold and so too do the improve-
ments shown here (for large r), so the better dipole may find use as
a component of future models or in Hybrid diffusion/Monte-Carlo
methods.
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Figure 17: Comparison with various individual modifications active. The red curve is the classical dipole. The dashed curves use the
improved diffusion boundary conditions. The Blue curves use Grosjean’s modified diffusion but classical exitance calculations. The Green
curves use the improved exitance calculation but classic diffusion theory. The dot-dashed curved is the better dipole.
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