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Abstract

We demonstrate a method to calculate high-precision benchmarks for the reflectance and trans-

mittance of a finite rod with a stochastic cross section, assuming that the attenuation law has a

known closed form and both the single-scattering albedo and scattering kernel are deterministic.

We introduce new 10-digit values for an existing binary-Markov benchmark (including mean and

variance), along with several new benchmarks defined for non-Markov binary mixtures and a con-

tinuous fluctuation model featuring gamma stationary statistics. Furthermore, we reveal that our

analysis of scattering in the stochastic rod enables a practical algorithm for identifying the param-

eters of an n-ary Markov mixture that most accurately approximates transport in a non-Markov

system.

Keywords — Stochastic Media, Benchmark, Markov Mixture, Rod, CIR
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I. INTRODUCTION

Stochastic descriptions of linear transport in media exhibiting complex spatial material prop-

erty variation are widely employed in applications such as inertial confinement fusion, advanced

nuclear reactors, and radiation transport in clumpy media [1, 2, 3]. Deterministic transport on a

highly heterogeneous material domain is modeled by a transport equation with spatially random

interaction cross-sections and the problem reduces to one of creating realizations of stochastic

geometry, solving the transport equation on an ensemble of realizations, and post-processing the

results to obtain quantities of interest, such as the mean radiation reflectance and transmittance as

well as the interior flux [4, 5]. Although expensive to generate, these solutions provide important

benchmarks against which to measure the accuracy of efficient approximate models of non-classical

transport. Deterministic results, where possible, permit a more efficient exploration of stochas-

tic transport and can lead to additional insights. However, exact deterministic results have been

limited to purely-absorbing systems or one-dimensional, semi-infinite systems with deterministic

single-scattering albedo [6, 7].

In this paper, we present a new exact analytic transport result for steady-state monoenergetic

transport in a stochastic finite 1-D rod with scattering, provided the single-scattering albedo and

scattering kernel are both deterministic and homogeneous. In particular, we solve the albedo

problem for the finite rod and show that the ensemble-averaged reflectance R and transmittance

T of a finite rod follow directly from the attenuation law of the system. We further extend the

approach to compute the variances of R and T . Our approach is numerically stable and efficient,

bypassing direct use of the density of optical depths. We use it to present the first, to our knowledge,

deterministic confirmation of the ALP rod benchmarks [4], which we give to 10 places.

Our method applies to any system where the attenuation law is known exactly, and we also

give results for n-ary Markov mixtures, non-Markov binary mixtures and systems with transformed

Gaussian fluctuations. Our main result also inspires new methods for determining parameters of

an n-ary Markov mixture that best approximates the full transport in a non-Markov system,

and we share some promising results of approximating transport in media with continuous density

fluctuations using n-ary Markov approximations. Not all stochastic media are best described using

a discretely fluctuating cross section, and these new correspondences potentially extend the reach

of efficient approximations such as the Chord Length Sampling (CLS) [8] and conditional point
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sampling (CoPS) [9].

In the next section, we derive our new solution of the stochastic-rod albedo problem before

presenting new benchmark solutions in section III. Then in section IV, we demonstrate how to

approximate non-Markov systems with n-ary Markov mixtures.

II. STOCHASTIC TRANSPORT IN A FINITE ROD

In this section, we derive new solutions for linear transport in a stochastic rod. Transport

in a half rod with deterministic albedo and stochastic density has been well studied previously

[6, 10, 11, 12]. Our primary contribution is a new practical recipe for arbitrary precision in the

finite stochastic rod, subject to some limitations.

In a simplified one-dimensional “rod”, transport is restricted to flow left and right along

the x axis [13]. Collisions are governed by a total macroscopic cross section Σ(x) and scattering

is characterized using a “mean cosine” −1 ≤ g ≤ 1, where (1 + g)/2 is the probability that the

scattered direction is the same as the incoming direction. We will assume that the single-scattering

albedo 0 < c ≤ 1 is constant. The angular fluxes in such a source-free system satisfy [14]

±dψ±

dx
= −Σ(x)ψ±(x) + Σ(x)

c(1 + g)

2
ψ±(x) + Σ(x)

c(1− g)

2
ψ∓(x). (1)

For the albedo problem, we assume an inward, unit, deterministic source at x = 0 and seek the

reflectance (R) and transmittance (T ) for the rod of length a (where x ∈ [0, a]). For a realization

with deterministic Σ(x), the albedos are [14]

R(a) =
c(1− g)

2κ coth(κτ(a)) + c(−g)− c+ 2
(2)

T (a) =
κ(

1− c(g + 1)/2
)
sinh(κτ(a)) + κ cosh(κτ(a))

, (3)

where κ ≡
√

(1− c)(1− cg) is a diffusion constant and

τ(x) =

∫ x

0

Σ(x′) dx′ (4)

is the optical depth at position x from the left boundary.

For the stochastic case, we consider stationary fluctuations of Σ(x), and seek ensemble av-
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erages of the albedos ⟨R(a)⟩, ⟨T (a)⟩. If the density of optical depths fa(τ) of the rod of length

a is known, then the averages follow directly from the deterministic solutions [6], where the only

stochastic quantity is τ , for example

⟨R(a)⟩ =
∫ ∞

0

R(a)fa(τ) dτ. (5)

However, in practice, fa(τ) is often not known in closed form (excluding the case of non-physical

Gaussian fluctuations) and the required integrals are likely intractable. However, the related

Laplace transform

Ts(x) ≡ ⟨e−τ(x)s⟩, s ≥ 0, (6)

is known in closed form for many fluctuation models, as this is simply the attenuation law in the

purely absorbing rod where the extinction field Σ(x) is scaled by a constant s. While the density of

optical depths follows from Equation 6, it involves a numerically-problematic inverse transform, so

instead we seek to transform the deterministic albedos into a form where we can apply Equation 6

directly. We demonstrate this next, treating the absorbing and non-absorbing cases separately.

II.A. With Absorption

For the absorbing rod, we observe that the deterministic albedos (Equations 2 and 3) can be

transformed into a sum of exponentials of the optical depth. Applying the appropriate trignometric

expansions, multiplying top and bottom by e−τ(a) and expanding the geometric series, we can write

R(a) =
(1− β)c(1− g)

4κ

∞∑
n=0

βn
(
e−2nκτ(a) − e−2(n+1)κτ(a)

)
, (7)

T (a) = (1− β)

∞∑
n=0

βne−κ(2n+1)τ(a), β ≡ −2 + c+ cg + 2κ

−2 + c+ cg − 2κ
. (8)

We can now ensemble average these albedos directly using Equation 6 to produce an infinite sum

of scaled transmission laws

⟨R(a)⟩ = (1− β)c(1− g)

4κ

∞∑
n=0

βn
(
T2nκ(a)− T2(n+1)κ(a)

)
, (9)

⟨T (a)⟩ = (1− β)

∞∑
n=0

βnTκ(1+2n)(a), (10)
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which we find to converge rapidly in practice and amenable to high-precision benchmark compu-

tation.

These results illustrate an interesting relationship between related, but not identical, scat-

tering and purely-absorbing systems. For example, note how the mean transmission ⟨T (a)⟩ in the

rod with scattering is given exactly as an infinite sum of mean transmittances Tκ(1+2n)(a) for rods

of the same length a, but with no scattering and with the cross sections scaled by integer multiples

of the diffusion constant κ.

Eqs.(9 - 10) include a degenerate 00 for the case of perfectly forward scattering (g = 1)

because β = 0. In this case, the mean albedos reduce to R(a) = 0 and T (s) = T1−c(a), and the

latter result is identical to the known transect attenuation law for a chain of forward-scattering

collisions along a transect in a stochastic medium [15].

II.A.1. Variances

The same approach can be used to compute the variances of R and T . Using a similar

expansion of the squares of Eqs.(7-8), followed by ensemble averaging, we find

Var(R) =
(1− β)2c2(1− g)2

16κ2

1 +

∞∑
n=1

(β − 1)βn−2(β + βn− n+ 1)T2nκ(a)

− ⟨R(a)⟩2, (11)

Var(T ) = (1− β)2
∞∑

n=0

βn−1nT2nκ(a)− ⟨T (a)⟩2. (12)

Extending this approach to higher-order moments is straightforward.

II.A.2. Count-Conditional Albedos

Taking the Taylor expansion about c = 0 of the ensemble-averaged albedos (Eqs.(9-10)) yields

the count-conditional albedos ⟨Rn(a)⟩ and ⟨Tn(a)⟩ [16], where ⟨Rn(a)⟩ is the mean probability

of a particle escaping the rod of length a after experiencing exactly n collisions inside the rod.

Expanding the first few orders, we find new universal relations for low-order scattering from the
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stochastic rod:

⟨R0(a)⟩ = 0 (13)

⟨R1(a)⟩ =
1

4
c(1− g)(1− T2(a)) (14)

⟨R2(a)⟩ =
1

4
c2(1− g)

(
(g + 1)T

(1,0)
2 (a) +

1

2
(g + 1)(1− T2(a))

)
(15)

and

⟨T0(a)⟩ = T1(a) (16)

⟨T1(a)⟩ = −1

2
c(g + 1)T

(1,0)
1 (a) (17)

⟨T2(a)⟩ =
1

16
c2

(
2(g + 1)2T

(2,0)
1 (a)− (g − 1)2

(
2T

(1,0)
1 (a) + T1(a)− T3(a)

))
, (18)

in terms of derivatives of the mean attenuation law (Equation 6), defined by

T (j,k)
s (x) ≡ ∂j

∂sj
∂k

∂xk
Ts(x). (19)

These expressions further exemplify how observables in the scattering rod can be decomposed into

a combination of purely-absorbing calculations. For example, Equation 14 gives the probability of

reflecting from the rod after one collision in terms of an absorption calculation T2(a) for a rod of

the same length, but with the cross sections doubled in each realization (s = 2).

II.B. No Absorption

The case of no absorption (c = 1) requires a unique approach. For the lossless rod, the

deterministic reflectance R(a) and transmittance T (a) in a given realization with optical thickness

τ(a) are [14]

R(a) = 1− T (a), (20)

T (a) =
2

2 + (1− g)τ(a)
. (21)
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If we write Equation 21 as a Laplace integral,

T (a) =
2

1− g

∫ ∞

0

e
2s

g−1 e−sτ ds. (22)

then we have

⟨T (a)⟩ = 2

1− g

∫ ∞

0

∫ ∞

0

e
2s

g−1 e−sτfa(τ) dsdτ (23)

=
2

1− g

∫ ∞

0

e
2s

g−1Ts(a) ds, (24)

using Equation 6, assuming we can swap the integration order. This is convenient as a numerical

method, as it avoids numerical issues inverting Ts(x) to find fa.

For higher-order moments of T , we note the general Laplace transform

(
T (a)

)n
=

(
2

2 + (1− g)τ

)n

=
2n

(1− g)n (n− 1)!

∫ ∞

0

e
2s

g−1 sn−1e−sτ ds, (25)

which, after ensemble averaging, yields the transmittance moments

⟨T (a)n⟩ = 2n

(1− g)n (n− 1)!

∫ ∞

0

e
2s

g−1 sn−1Ts(a) ds. (26)

III. BENCHMARKS

We now apply the derivations in the previous section to produce a number of new high-

precision benchmarks for the finite stochastic rod.

III.A. Discrete Mixtures

Discrete fluctuations, where Σ(x) takes on one of n values Σj , j = 1, 2, . . . n, at any po-

sition x, form a useful class of stochastic media [17]. Laser light transport in mixed zones in

Rayleigh-Taylor unstable interface regions in inertial confinement fusion pellets and solar radia-

tion transport in atmospheres with clouds are notable applications where two or more immiscible

fluids manifest as discrete stochastic material mixtures. Monte Carlo and deterministic numer-

ical benchmark solutions have been developed for 1D alternating slabs with Markovian mixing

statistics, i.e., exponentially distributed chord lengths in the two materials, and used to assess the
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accuracy of approximate closure-based homogenized transport models, the most prominent being

the Levermore-Pomraning (LP) model. More recently, this work has been extended to an arbitrary

number of materials, so-called n-ary Markov mixtures [18], and multi-dimensions [5, 19, 20].

III.A.1. Markov Mixtures

For n-ary Markov mixtures, the required Laplace transform Ts(x) is always a sum of n

exponentials and can be compactly expressed as a matrix exponential [21, Eqs.(20,21)]

Ts(x) = πe(Q−sS)x1, (27)

where S is a diagonal matrix with the cross sections Σj in each phase, 1 = (1, 1, · · · , 1)T , π is

the equilibrium distribution of initial phases (volume fractions occupied by phase j) and Q is a

matrix of transition coefficients, where Qij ds is the probability of transitioning from phase i to

phase j when traversing a small distance ds. The general Ts result in Equation 27 seems to have

first appeared in the study of Markov-Modulated Poisson Processes [22]. For the well-studied case

of binary Markov mixtures, T1(x) is the Levermore-Pomraning attenuation law.

Since the general attenuation in Eq.(27) can be computed to arbitrary precision, we can effi-

ciently compute high-precision benchmarks for scattering in the stochastic rod using the methods

derived in Section II. It is interesting to note that, since Ts(x) is always a sum of n exponentials,

the albedos R and T are therefore exactly represented as a countable sum of exponentials for any

n-ary Markov system.

We now give several benchmark results for binary mixtures. In Table I, we give exact

benchmark values for the c = 0.9 configuration of the ALP benchmarks [4], which were originally

determined using the quenched-disorder approach [23]. We were able to achieve 10-point accuracy

when truncating the summations at 25 terms in a time of 10−6 seconds. We observed a reduction

in error proportional to e−2n, where n is the number of terms in the sum, and computation time

proportional to n. Using Eqs.(11 - 12), we further extend the original ALP benchmark by including

exact variances.

Next, using Equation 23 for the mean transmittance in the case of no absorption (c = 1), we

extend the ALP benchmarks to the lossless case, providing exact values in Table II.
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Case a ⟨R(a)⟩ ALP (R) Var(R) ⟨T (a)⟩ ALP (T) Var(T)
1 0.1 0.0336085547 0.0332 0.0051070843 0.9567341180 0.9572 0.0087422019

1.0 0.2120602879 0.2121 0.0251034404 0.7017300622 0.7017 0.0592783333

10.0 0.5146120962 0.5146 0.0001554905 0.0558841381 0.0557 0.0039173836

2 0.1 0.0311855790 0.0310 0.0061086706 0.9592533739 0.9595 0.0106827605

1.0 0.1171004102 0.1173 0.0263761356 0.8198111270 0.8194 0.0817529106

10.0 0.4298316332 0.4301 0.0113727340 0.2663732364 0.2658 0.0744737180

3 0.1 0.0406033351 0.0407 0.0015544326 0.9494962649 0.9494 0.0024073095

1.0 0.2150813235 0.2157 0.0342908636 0.6957070903 0.6948 0.0707881374

10.0 0.4689446932 0.4688 0.0146380875 0.1510863382 0.1510 0.0654108812

TABLE I
Exact ALP benchmark values for the c = 0.9 configurations. The original MC values included for
comparison (uncertainty for those values was not reported).

Case a ⟨T (a)⟩ Var(T)
1 0.1 0.9614593667 0.006853462

1.0 0.7406900320 0.042814787

10.0 0.1852212671 0.0042717562

2 0.1 0.9638923466 0.008314012

1.0 0.8440465606 0.058670050

10.0 0.3515139061 0.0617658987

3 0.1 0.9544332317 0.001958766

1.0 0.7365742979 0.052559115

10.0 0.2593041025 0.0514596072

TABLE II
Exact benchmark values for the c = 1 extension of the ALP benchmarks.

III.A.2. Non-Markov Binary Mixtures

To produce an exact benchmark for a system where the Markov assumption is not appropri-

ate, we require a random Σ field where exact attenuation law is known. For a binary mixture where

the chord lengths along a transect are given by an alternating renewal process, the required atten-

uation law is known in terms of its Laplace transform. We noted three independent derivations of

this result in the literature [24, 25, 26], which we verified to be equivalent. For Erlang-distributed

chord-length distributions, and other simple models, T̃s can be inverted and new high precision

benchmarks can be computed using our approach.

We propose a new benchmark for a non-Markovian binary rod with deterministic albedo

c = 0.9 and isotropic scattering g = 0. For the two phases in the binary mixture, we chose Erlang

chord lengths with densities p1(x) = e−xx and p2(x) = 128
243e

−4x/3x3, respectively. We assigned

cross sections Σ1 = 12/5 and Σ2 = 1/15 to each phase, respectively. Symbolic computation

software such as MATHEMATICA can easily invert the necessary Laplace transform to find Ts,

but this results in a very bulky expression. For reference, the resulting attenuation law for s = 1
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a ⟨R(a)⟩ Var(R) ⟨T (a)⟩ Var(T)
0.1 0.0399669216 0.0019874411 0.9501496532 0.0031035130

1.0 0.2140827329 0.0306370583 0.6974850029 0.0666697986

10.0 0.5146520340 0.0002016091 0.0542852987 0.0040831262

TABLE III
Mean and variance of the rod albedos for our non-Markov binary benchmark.

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Rod length (a)

〈T
(a
)〉
,
〈R
(a
)〉

Mean

R

T

0 2 4 6 8 10
1.×10-4

5.×10-4
0.001

0.005
0.010

0.050

Rod length (a)

V
ar
[T
(a
)]
,
V
ar
[R
(a
)]

Variance

Fig. 1. Comparison of our non-Markov binary rod benchmark (continuous) to the ALP-Case-1
Markov benchmark (dots) as a function of rod length. Despite a close agreement of the mean
albedos (left) over a range of rod lengths a, the non-Markov mixing statistics lead to a higher
variance system for most rod lengths (right).

has Laplace transform:

T̃1(p) =
5
(
253125p5 + 2885625p4 + 12987000p3 + 29429325p2 + 34664145p+ 18270604

)
(1125p3 + 6975p2 + 12915p+ 5497) (1125p3 + 6975p2 + 12915p+ 9497)

. (28)

We provide reflectance and transmittance means and variances in Table III. We observed con-

vergence to 10 places when truncating the sums in Eqs.(7-8) to 17 terms (and 25 terms for the

variances).

The mixing parameters for this benchmark were intentionally chosen in order to closely match

the mean albedos of the ALP Case 1 Markov c = 0.9 benchmark (Table I). In Figure 1, we compare

both the mean and variance of the rod albedos between the two benchmarks as a function of rod

length a. The figure shows that although the mean observables are well aligned over a range of

system parameters, the variances are not as well aligned, clearly demonstrating the insufficiency of

the mean for adequately characterizing the effects of stochasticity on physical quantities of interest.

A large variance indicates that the system is inherently unpredictable and moment information

is of limited value under these conditions. Extreme event probabilities such as the probability of

exceeding threshold states are more meaningful in these situations, but clearly more challenging

to compute.
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III.B. TRANSFORMED-GAUSSIAN FLUCTUATIONS

Discrete fluctuations are not appropriate for every physical system. For radiation transport

in turbulent plasmas and neutron transport in boiling water reactors and liquid-fueled molten salt

reactors, for instance, random variation in the cross-section is more accurately characterized by

continuous fluctuations. Gaussian stochastic processes in space and time are widely employed in

this context [27, 10] but Gaussian fluctuations of Σ are problematic because negative values of

the cross-section are admitted, which is nonphysical and leads to divergent solutions for the finite

rod albedos. However, Gaussian processes can be used to drive fluctuations that give physically

sound solution realizations. For instance, the Cox-Ingersoll-Ross (CIR) Cox process, which is a

Poisson process driven by the sum of k squared Ornstein-Uhlenbeck (OU) processes, produces a

k/2-gamma distributed stationary distribution for Σ. An example realization of two-dimensional

CIR k = 1 noise is shown in Figure 3 (left). These non-negative continuous random fields are

known as Feller processes [28], which are one of the six Pearson diffusions [29]. The Feller process

offers a flexible family of continuous noises with known attenuation laws, and we use it now to

present the first exact benchmark with scattering for a system with continuous fluctuations.

In the case of k = 1, corresponding to quadratic or squared-Gaussian statistics, the non-

Markovian model can be embedded in a higher order Markovian process by driving the fluctua-

tions with white noise Gaussian distributed stochastic η(x) with mean ⟨η(x)⟩ = 0 and correlation

function ⟨η(x) η(x′)⟩ = D δ(x− x′). The attenuation problem is then defined by the following pair

of stochastic differential equations:

d

dx
τ(x) = ξ2(x), τ(0) = 0, (29a)

d

dx
ξ(x) = −Aξ(x) + η(x), ξ(0) = ξ0, (29b)

where the initial condition ξ0 may be random or deterministic. The constants A and D are free

parameters that can be used to appropriately scale the cross-section Σ. The joint process (τ, ξ) is

Markovian with respect to the penetration distance x and, using standard manipulations of such

stochastic differential equations [30], the associated joint probability density function P (τ, ξ, x) can
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be shown to satisfy the following Fokker-Planck equation (FPE):

∂

∂x
P (τ, ξ, x) = −ξ2 ∂

∂τ
P (τ, ξ, x) +A

∂

∂ξ

[
ξ P (τ, ξ, x)

]
+
D

2

∂2

∂ξ2
P (τ, ξ, x), (30a)

P (τ, ξ, 0) = δ(τ)Pξ0(ξ0). (30b)

The ensemble-averaged attenuation then follows from

⟨e−τ(x)s⟩ =
∫ ∞

0

dξ

∫ ∞

0

e−sτP (τ, ξ, x)dτ. (31)

While a closed-form solution for the three dimensional (in τ, ξ, x) joint distribution appears in-

tractable, ensemble averages with respect to τ satisfy reduced order FPEs that are solvable in

certain instances. In particular, the partial ensemble average of the attenuation defined by

R(ξ, x) =

∫ ∞

0

e−sτP (τ, ξ, x)dτ, (32)

satisfies the lower-order equation FPE

∂

∂x
R(ξ, x) = A

∂

∂ξ

[
ξ R(ξ, x)

]
+
D

2

∂2

∂ξ2
[
R(ξ, x)

]
− λ ξ2R(ξ, x), (33)

while Equation (32) yields ⟨e−τ(x)s⟩ =
∫∞
0
R(ξ, x)dξ. Equation (33) has been previously solved

independently in a several different contexts and the general attenuation law is [31, 32]

Ts(x) =

 e
xy
2√(

1− 2⟨Σ⟩s
ky

)
sinh(ηxy)

η + cosh(ηxy)


k

, η =

√
1− 4⟨Σ⟩s

ky
, (34)

where the autocorrelation of the k independent OU processes is R(|s − t|) = (⟨Σ⟩/k)e−y|s−t|.

Stochastic media with CIR Σ fluctuations and this attenuation law has been recently proposed for

particle-laden turbulent flow [33].
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a ⟨R(a)⟩ Var(R) ⟨T (a)⟩ Var(T)
0.1 0.0389587226 0.0023550422 0.9511991933 0.0038604858

1.0 0.1968964970 0.0262215535 0.7207973500 0.0641384161

10.0 0.4158252491 0.0199327259 0.2894548605 0.0925975274

TABLE IV
Mean and variance of the rod albedos for our CIR binary benchmark.

0 20 40 60 80 100

0.005

0.010

0.050

0.100

a

〈R
n
(a
)〉

0 20 40 60 80 100

0.005

0.010

0.050

0.100

a

〈T
n
(a
)〉

Fig. 2. Validation of Equation 14 etc. for the mean reflectance (left) and transmittance (right)
after exactly n collisions: MC (dots) vs analytic (continuous) for n ∈ {1, 2, 3}. CIR fluctuations
with k = 1, y = 0.003 and ⟨Σ⟩ = 0.3136, isotropic scattering, c = 0.9.

III.B.1. A New Continuous-Fluctuation Benchmark

We define a CIR benchmark for the rod with k = 1, y = 0.1, ⟨Σ⟩ = 1, c = 0.9, and

isotropic scattering (g = 0). We provide reflectance and transmittance means and variances in

Table IV. We observed convergence to 10 places when truncating the sums in Eqs.(7-8) to 17

terms (and 25 terms for the variances). Additionally, we validate the derivations for the n-th

scattered albedos (subsubsection II.A.2) in Figure 2 by using quenched disorder (i.e. generating

independent realizations of OU noise, squaring those values to determine Σ(x) in the realization,

and estimating the R(n) and T (n) in each using Woodcock tracking, and finally averaging many

such results).

IV. MARKOV n-ARY APPROXIMATIONS

The efficiency of our approach permits a practical scheme for fitting Markov n-ary mixtures

to a given non-Markov system. We present an initial investigation of this method here. Future work

is required to more broadly explore the relationships between Markov and non-Markov systems in

higher dimensions, possibly opening the door to applying methods such as Chord Length Sampling

(CLS) and Conditional Point Sampling (CoPS) [34] to non-Markov systems.
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In Section II, we showed that the mean and variance of the albedos of the rod are both

purely a function of the scaled transmittance law Ts(x). Therefore, it suffices to find n-ary mixture

parameters that jointly minimize the loss of Ts(x) over a range of values s and distances x. In

practice, the Laplace inversions producing Ts(x) for an n-ary Markov mixture involve root finding

that challenges non-linear optimization routines. To circumvent this limitation, we note that the

Laplace transform (with respect to x) of the n-ary attenuation law (Equation 27) is a simpler

rational expression of s and p [22, Sec.2.4],

T̃s(p) = π(Ip−Q+ sS)−11 (35)

and so we jointly optimize for T̃s(p) over a range of s values and p values. We found that using

integer multiples of the diffusion constant κ for s and uniform spacing of p works well in practice.

To demonstrate this approximation procedure, we approximated our CIR rod benchmark

from the previous section using an n-ary Markov mixture with n ∈ {2, 3, 4, 5}. Following Hobson

and Scheuer, we used a hierarchical transition matrix Q, as detailed in [21, Sec.3.2]. This reduced

the number of variables to solve for in the approximation by requiring that the n phases adopt

an increasing set of cross sections Σi and, additionally, that phase transitions are only permitted

to the neighbouring phase(s). Figure 3 (right) illustrates how quantization of CIR noise tends to

produce a discrete random field that satisfies this hierarchical property.

We used the FindFit procedure in Mathematica to fit the Laplace transforms in Eq.(35) to

tabulated data of the target CIR system where s was the first 15 integer multiples of diffusion

constant κ, and p was uniformly evaluated from 0 to 40 with dp = 0.1. For n > 2, we initially

solved for parameters Σi and mean chord lengths Λi in a system constrained to exhibit equal

volume fractions in each phase before relaxing the model to permit arbitrary volumes fractions.

Beginning the more general optimization with the prior equal-volume-fraction initial conditions

solved numerical issues in the optimization.

15



Fig. 3. Left: a two-dimensional realization of stationary CIR noise with k = 1. Right: An
approximation of the random field on the left by quantizing the values into a 5-way discrete
mixture using the solved parameters S5 in this section. Notice how the quantized random field
results in a hierarchical sequence of phase transitions along any transect: a transition to a phase
2 or more away is very unlikely.

For the four approximations of order n, we found the transition matrices Qn to be:

Q2 =

 −0.0279262 0.0279262

0.0232981 −0.0232981

 , Q3 =


−0.0637844 0.0637844 0

0.0528467 −0.0734912 0.0206445

0 0.0220164 −0.0220164



Q4 =



−0.130153 0.130153 0 0

0.133293 −0.205295 0.0720022 0

0 0.051542 −0.0635521 0.0120101

0 0 0.0173386 −0.0173386


,

and

Q5 =



−0.175419 0.175419 0 0 0

0.175419 −0.292094 0.116676 0 0

0 0.116676 −0.196281 0.0796052 0

0 0 0.0796052 −0.111067 0.031462

0 0 0 0.031462 −0.031462


.
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The volume fractions that result from these Q matrices are, respectively,

π2 = {0.454824, 0.545176},

π3 = {0.299516, 0.361506, 0.338978},

π4 = {0.233353, 0.227856, 0.318307, 0.220484},

π5 = {0.2, 0.2, 0.2, 0.2, 0.2}.

We encountered numerical instabilities for the n = 5 optimization with arbitrary volume

fractions and instead report the equal-volume-fractions result for n = 5.

The optimal cross sections (and mean cross sections ⟨Σ⟩n = Sn · πn) were found to be

S2 = {0.0733261, 1.30711}, ⟨Σ⟩2 = 0.745957, (n = 2),

S3 = {0.0384934, 0.376838, 2.25165}, ⟨Σ⟩3 = 0.91102, (n = 3),

S4 = {0.0215733, 0.200468, 0.739734, 3.06014}, ⟨Σ⟩4 = 0.960887, (n = 4),

S5 = {0.0163243, 0.143596, 0.491551, 0.945288, 3.24069}, ⟨Σ⟩5 = 0.96749, (n = 5),

where Sn form the S matrices in Eq. 27, consisting of Σi for the corresponding approximation

order n.

The accuracy of these approximations for both the mean and variance of the albedos as a

function of rod length is indicated in Figure 4. Note how all of the approximations do a reasonable

job of fitting the mean albedos, but the mean accuracy improves and the variance greatly improves

as the number of phases in the approximation is increased.

V. CONCLUSION

We have presented an efficient framework for computing high-precision albedos for stochastic

finite rods, and used this to derive new benchmarks, which include binary Markov mixtures and a

non-Markov binary mixture with Erlang-distributed chord lengths. Moreover, we have introduced

the first exact benchmark for a scattering system with continuous fluctuations, using the Cox-

Ingersoll-Ross process to model the cross-section fluctuations.

Additionally, we have investigated the approximation of non-Markov systems by n-ary Markov
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(b) 3-way Markov approximation
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(c) 4-way Markov approximation
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(d) 5-way Markov approximation

Fig. 4. Accuracy of n-ary approximations to our CIR benchmark. The left and middle plots
indicate the accuracy of the approximation (continuous) to the reference data (dots) as a function
of rod length. The right plots compare the accuracy of the fitted attenuation laws Tjκ(x) for
selected values of j (approximate model using dashed).
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mixtures, which holds potential for enabling the application of efficient methods like Chord Length

Sampling and Conditional Point Sampling to non-Markov systems. Our initial exploration demon-

strates the feasibility of this approach, although further research is required to establish a more

comprehensive understanding of the relationships between Markov and non-Markov systems.

In conclusion, the methods presented in this paper provide a foundation for more accurate and

efficient analysis of radiative transport in stochastic media. By establishing reliable benchmarks

and exploring the approximation of non-Markov systems by Markov mixtures, our work contributes

to the development of new techniques and insights that can help advance the understanding of

complex stochastic linear transport processes in various physical systems.
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